
PloneTestCase
The Plone 2 Test Environment Explained

Plone Conference 2004, Vienna

Stefan H. Holek
Plone Solutions
stefan@plonesolutions.com



Goals
After attending this tutorial you should:

- Know which packages you need to install and where to get them
- Know how to run Plone tests
- Know how to add a test suite to a Plone product
- Know what the default fixture is, what it provides, and how it can be

used
- Know how to write (simple) tests
- Know where to find further information

Introduction
PloneTestCase is the test framework for Plone 2. It sits on top of
ZopeTestCase by the same author (as the name may have already suggested
to the attentive reader).

PloneTestCase makes it possible to write automated tests for Plone and
Plone-based applications. Such tests include unit tests, integration tests, and
even functional tests (which use the ZPublisher).

Plone has about 600 unit tests at the moment. I want it to have 1500.
That’s where you come in <wink>.

Required Software
First we’ll assume that you have Zope 2.7 installed, preferably a fresh
checkout of Zope-2_7-branch.

Then you’ll need ZopeTestCase from
http://zope.org/Members/shh/ZopeTestCase. Install it into
$ZOPE_HOME/lib/python/Testing (not Products!).

If you don’t have a fresh checkout of Zope-2_7-branch, download the test.py
script from http://zope.org/Members/shh/Tutorial/test.py and install it into
$ZOPE_HOME/bin (overwriting the one that is there).

I recommend making the test.py script executable. Also make sure the first
line reads:
#!/usr/bin/env /path/to/python2.3/bin/python

Note that this MUST be the Python that is running your Zope!

And of course, you will need an instance with Plone 2.0.4 installed.



Running Tests
For running unit tests we typically use a test runner. There is a variety of test
runners available, some work with Zope, and some even work with Zope 2.
The fundamental issue is that for starting up Zope, a test runner needs to
know about SOFTWARE_HOME and INSTANCE_HOME.

For this tutorial we’ll stick with the test.py script, which we have more or less
elaborately installed before.

Now we have everything we need to run the Plone tests. Let’s do that then:

cd $INSTANCE_HOME
$ZOPE_HOME/bin/test.py -v  \
    --config-file etc/zope.conf  \
    --libdir Products/CMFPlone

What’s Going On?
- First, the test runner tells us that it is going to run unit tests (not

functional tests) from $INSTANCE_HOME/Products/CMFPlone.
- Second, it configures Zope from the specified config file.
- Third, it scans for and imports test modules.

(Large parts of the PloneTestCase magic happen at import time, for
example all required Zope products are installed, and a Plone site is
created.)

- Finally, test.py runs the accumulated tests.

Now let’s run just the membership tool tests:

cd $INSTANCE_HOME
$ZOPE_HOME/bin/test.py –v  \
    --config-file etc/zope.conf  \
    --libdir Products/CMFPlone   \
    testMembershipTool

There is a more detailed description of how test.py processes tests in the test
runner comparison document at:
http://zope.org/Members/shh/TestRunnerComparison

How about runalltests.py, you ask? It is a small, featureless test runner. It
exists because I think it is neat, YMMV.



Writing Tests
Let’s digress for a quick overview of PyUnit concepts

- Test Case
Tests a single scenario

- Test Fixture
Preparations needed to run a test

- Test Suite
Aggregation of multiple test cases

- Test Runner
Runs a test suite and presents the results

In a TestCase

- The setUp() hook is used to create the fixture.
- The tearDown() hook may be used to destroy the fixture, if necessary.
- Names of test methods must start with a common prefix, typically ‘test’.

A simple PyUnit test:

import unittest

class MyTest(unittest.TestCase):

    def setUp(self):
        self.answer = 42

    def testAnswer(self):
        self.assertEqual(self.answer, 42)

def test_suite():
    suite = unittest.TestSuite()
    suite.addTest(unittest.makeSuite(MyTest))
    return suite



For comparison, here is the PloneTestCase version:

from Products.CMFPlone.tests import PloneTestCase

class MyTest(PloneTestCase.PloneTestCase):

    def afterSetUp(self):
        self.answer = 42

    def testAnswer(self):
        self.assertEqual(self.answer, 42)

def test_suite():
    from unittest import TestSuite, makeSuite
    suite = TestSuite()
    suite.addTest(makeSuite(MyTest))
    return suite

What’s Different?
- We don’t derive from unittest.TestCase but from

PloneTestCase.PloneTestCase (which of course is a subclass of
unittest.TestCase).

- We are NOT allowed to use the setUp() and tearDown() hooks of
PyUnit as they are reserved by PloneTestCase. PloneTestCase
provides it’s own hooks, notably afterSetUp(), beforeTearDown(), and
afterClear(). (I could tell you why, but I won’t.)



Hands On!
Create a dummy product:

cd $INSTANCE_HOME/Products
mkdir Tutorial
touch Tutorial/__init__.py
mkdir Tutorial/tests
touch Tutorial/tests/__init__.py

Go to Tutorial/tests and type in the first tests from above, name the file
testAnswer.py

How would you run it?

cd $INSTANCE_HOME/Products/Tutorial
$ZOPE_HOME/bin/test.py -v --libdir . testAnswer

Now do the same for the second test, naming the file testPloneAnswer.py.

$ZOPE_HOME/bin/test.py -v  \
    --config-file ../../etc/zope.conf  \
    --libdir . testPloneAnswer

And to run all tests in Tutorial:

$ZOPE_HOME/bin/test.py -v  \
    --config-file ../../etc/zope.conf  \
    --libdir .

Default Fixture
To write more interesting Plone tests, we first need to know more about the
test environment.
We have already seen that PloneTestCase creates a complete Plone site for
us. It doesn’t stop there though.

But what do we need?

- An Application object
- A REQUEST
- A Plone Site object
- A User Folder
- A default user with role ‘Member’
- A member area for the default user
- And we need to log in



Don’t worry, all is catered for. In hooks and test methods of a PloneTestCase
subclass you can access these objects as:

- self.app
- self.app.REQUEST
- self.portal
- self.portal.acl_users
- self.folder

Use the ‘PloneTestCase.default_user’ constant when you need the default
user’s name, ‘PloneTestCase.portal_name’ should you need the name of the
portal.

What Is this Man Telling Me?
Fortunately, you are now in a position where you no longer need to just trust
me. You can write (and run) tests to verify my claims. Like so:

from Products.CMFPlone.tests import PloneTestCase
from AccessControl import getSecurityManager

portal_name = PloneTestCase.portal_name
default_user = PloneTestCase.default_user

class FixtureTest(PloneTestCase.PloneTestCase):

    def testApp(self):
        self.failUnless(
            'Control_Panel' in self.app.objectIds())

    def testPortal(self):
        self.failUnless(
            portal_name in self.app.objectIds())

    def testMembersFolder(self):
        self.failUnless(
            'Members' in self.portal.objectIds())

    def testUserFolder(self):
        self.failUnless(
            'acl_users' in self.portal.objectIds())

    def testUser(self):
        uf = self.portal.acl_users
        self.failIf(uf.getUserById(default_user) is None)



    def testMemberArea(self):
        self.assertEqual(
            self.portal.Members[default_user],
            self.folder)

    def testRequest(self):
        self.failUnless(
            self.app.REQUEST.has_key('SERVER_URL'))

    def testAcquiredRequest(self):
        self.failUnless(
            self.folder.REQUEST.has_key('SERVER_URL'))

    def testLoggedIn(self):
        auth_user = \
            getSecurityManager().getUser().getId()
        self.assertEqual(auth_user, default_user)

def test_suite():
    from unittest import TestSuite, makeSuite
    suite = TestSuite()
    suite.addTest(makeSuite(FixtureTest))
    return suite

You may want to type this in, at least partially. Name the file testFixture.py.
You know how to run the tests by now (or I have failed <wink>).

Observations
- The import of PloneTestCase must be the first import statement

in every test module.
- PyUnit provides methods that help with making assertions:

failUnless(), assertEqual(), etc.
- The Zope API works.
- Acquisition works.
- Everything this man says is true <wink>.

Want more? My pleasure!
(This may be a good time to install DocFinderTab, if you haven’t already.)



Testing Content
As Plone is about content management, let’s see how to test a content object.

from Products.CMFPlone.tests import PloneTestCase
from Acquisition import aq_base

class DocumentTest(PloneTestCase.PloneTestCase):

    def afterSetUp(self):
        self.catalog = self.portal.portal_catalog
        self.workflow = self.portal.portal_workflow
        # Create a document in our home folder
        self.folder.invokeFactory('Document', id='doc')

    def testAddDocument(self):
        self.failUnless(
            hasattr(aq_base(self.folder), 'doc'))

    def testEditDocument(self):
        self.folder.doc.edit(
            text_format='plain', text='foo')
        self.assertEqual(
            self.folder.doc.EditableBody(), 'foo')

    def testFindDocument(self):
        self.failUnless(self.catalog(id='doc'))

    def testPublishDocument(self):
        self.setRoles(['Reviewer'])
        self.workflow.doActionFor(
            self.folder.doc, 'publish')
        state = self.workflow.getInfoFor(
            self.folder.doc, 'review_state')
        self.assertEqual(state, 'published')

def test_suite():
    from unittest import TestSuite, makeSuite
    suite = TestSuite()
    suite.addTest(makeSuite(DocumentTest))
    return suite

Observations
- The Plone site works. We can create documents, edit them, and find

them in the catalog. We can even use workflow!
- We can use the setRoles() API to change the roles of the default user.
- We have to strip off undesired acquisition wrappers using aq_base().
- We don’t need to clean up.



Testing Security

from Products.CMFPlone.tests import PloneTestCase
from AccessControl import Unauthorized

default_user = PloneTestCase.default_user

class SecurityTest(PloneTestCase.PloneTestCase):

    def afterSetUp(self):
        self.folder.invokeFactory('Document', id='doc')
        self.folder.doc.manage_permission(
            'View', ['Manager'], acquire=0)

    def testOwnerViewsDocument(self):
        self.assertRaises(Unauthorized,
            self.folder.restrictedTraverse, 'doc')

    def testManagerViewsDocument(self):
        self.setRoles(['Manager'])
        self.folder.restrictedTraverse('doc')

class MultiUserTest(PloneTestCase.PloneTestCase):

    def afterSetUp(self):
        self.membership = self.portal.portal_membership
        self.membership.addMember(
            'user2', 'secret', ['Member'], [])

        self.folder.invokeFactory('Document', id='doc')
        self.folder.doc.manage_permission(
            'View', ['Owner'], acquire=0)

    def testOwnerViewsDocument(self):
        self.folder.restrictedTraverse('doc')

    def testMemberViewsDocument(self):
        self.login('user2')
        self.assertRaises(Unauthorized,
            self.folder.restrictedTraverse, 'doc')

    def testAnonymousViewsDocument(self):
        self.logout()
        self.assertRaises(Unauthorized,
            self.folder.restrictedTraverse, 'doc')



def test_suite():
    from unittest import TestSuite, makeSuite
    suite = TestSuite()
    suite.addTest(makeSuite(SecurityTest))
    suite.addTest(makeSuite(MultiUserTest))
    return suite

Observations
- We need to trigger Zope security validation by explicitly calling

restrictedTraverse().
- We can use the setRoles() API to change the roles of the default user.
- We can use the login() API to log in as another user.
- We can use the logout() API to log out and become Anonymous User.
- We can write more than one TestCase in a single module as long as

we add all of them to the test suite.

Summary
We demonstrated how to run test suites and individual test modules, and we
showed how to construct TestCases derived from the PloneTestCase base
class. We described the default fixture and hinted at the security API. The
tutorial at the conference will (time permitting) walk you through even more
elaborate test scenarios, for example from the CMFPlone test suite.

Given the right tools, it can be straightforward to write automated tests for
Zope and Plone. The PloneTestCase package provides you with a fully
featured Plone environment, allowing you to concentrate on writing tests while
leaving the plumbing to the framework.



Resources
Dive Into Python, Chapter on Unit Testing
http://diveintopython.org/unit_testing/index.html

PyUnit Documentation
http://www.python.org/doc/current/lib/module-unittest.html

ZopeTestCase
http://zope.org/Members/shh/ZopeTestCase
http://zope.org/Members/shh/ZopeTestCaseWiki
CVS access through Collective

CMFTestCase
http://zope.org/Members/shh/CMFTestCase
CVS access through Collective

PloneTestCase (standalone)
CVS access through Collective

DocFinderTab
http://zope.org/Members/shh/DocFinderTab

testrunner.py
http://zope.org/Members/shh/TestRunner

test.py
Ships with Zope >= 2.7.3

Test Runner Comparison
http://zope.org/Members/shh/TestRunnerComparison

Code Examples for the Tutorial
http://zope.org/Members/shh/Tutorial


