
PloneTestCase
The Plone 2 Test Environment Explained

Stefan H. Holek
stefan@plonesolutions.com

1

Goals

• Know which packages we need to install
and where to get them

• Know how to run Plone tests

• Know how to add a test suite to a Plone
product

At the and of this tutorial, we will...
2

Goals II

• Know what the default fixture is, what it
provides, and how it can be used

• Know how to write simple tests

• Know where to find additional information

3

Quote

“Program testing can be used very efficiently
to prove the presence of bugs, but never to
show their absence.”

--E. W. Dykstra

So what am I doing here?
4

Yes, But

• This won’t keep us from trying <wink>

• Dykstra was after a “mathematical proof”
kind of correctness in software programs

• We can do with a “pretty darn good” kind
of correctness, thank you

Try to think of an alternative! Without automated tests
we are in random country anyway. Any amount of order
we can introduce into the process can only be a good
thing. Even if it is not 100%.

5

And

“Software Engineering is Programming when
you can’t.”

--E. W. Dykstra

There is also no alternative to the fact that software
programs must be created by programmers. We cannot
engineer away real life constraints like complexity and
uncertainty. What we *can* do, is use tools and adopt
practices that allow us to cope with those things. Writing
automated tests is one of these practices; PloneTestCase
is one of these tools.

6

Intro

• PloneTestCase is the test framework for
Plone 2

• It sits on top of ZopeTestCase

• It allows to easily write automated tests for
Plone and Plone-based applications

• Plone 2 has about 600 unit and integration
tests (at the time of this writing)

7

Required Software

• Zope 2.7.2

• Even better: Zope-2_7-branch

• ZopeTestCase 0.9.2
http://zope.org/Members/shh/ZopeTestCase

• Plone 2.0.4

8

test.py

• If you don’t have Zope-2_7-branch:
http://zope.org/Members/shh/Tutorial/test.py

• Make it executable:
chmod a+x test.py

• Make sure the first line reads:
#!/usr/bin/env /path/to/python2.3/bin/python

This MUST be the Python that is running
your Zope!

Using the wrong Python interpreter probably is the #1
mistake when running tests

9

Try It!

$ZOPE_HOME/bin/test.py --help

10

Running Tests

11

Test Runners

• For running automated tests we typically
use a test runner.

• There are a few out there, some of them
even work with Zope 2.

• Main issue is that a test runner needs to be
able to configure and startup Zope.

12

Running All Tests

cd $INSTANCE_HOME

$ZOPE_HOME/bin/test.py -v \

 --config-file etc/zope.conf \

 --libdir Products/CMFPlone

13

Running All Tests (alt)

cd $INSTANCE_HOME

/path/to/python2.3/bin/python \

$ZOPE_HOME/bin/test.py -v \

 --config-file etc/zope.conf \

 --libdir Products/CMFPlone

14

What’s Going On?

• test.py tells us it is about to run unit tests
from $INSTANCE_HOME/Products/CMFPlone

• test.py configures Zope from the config file

• test.py scans for and imports test modules

• test.py runs the accumulated tests

15

Observation

• Large parts of the PloneTestCase magic
happen at import time, for example all
required Zope products are installed, and a
Plone site is created.

16

Running a Single Module

cd $INSTANCE_HOME

$ZOPE_HOME/bin/test.py -v \

 --config-file etc/zope.conf \

 --libdir Products/CMFPlone \

 testMembershipTool

17

Writing Tests

18

PyUnit Concepts

• Test Case
 Tests a single scenario

• Test Fixture
 Preparations needed to run a test

• Test Suite
 Aggregation of multiple test cases

• Test Runner
 Runs a test suite and presents the results

19

TestCase Concepts

• The setUp() hook is used to create the
fixture.

• The tearDown() hook may be used to
destroy the fixture, if necessary.

• Names of test methods must start with a
common prefix, typically “test”.

20

PyUnit Test
import unittest

class MyTest(unittest.TestCase):

 def setUp(self):

 self.answer = 42

 def testAnswer(self):

 self.assertEqual(self.answer, 42)

def test_suite():

 suite = unittest.TestSuite()

 suite.addTest(unittest.makeSuite(MyTest))

 return suite

The Test Case abstraction comes in the form of a base
class.
The setUp() hook is used to set up the fixture.
The name of the test method starts with “test”.
The test_suite() function is called by test runners.

21

PloneTestCase Version
from Products.CMFPlone.tests import PloneTestCase

class MyTest(PloneTestCase.PloneTestCase):

 def afterSetUp(self):

 self.answer = 42

 def testAnswer(self):

 self.assertEqual(self.answer, 42)

def test_suite():

 from unittest import TestSuite, makeSuite

 suite = TestSuite()

 suite.addTest(makeSuite(MyTest))

 return suite

22

What’s Different?

• We don’t derive from unittest.TestCase but
from PloneTestCase.PloneTestCase.

• We are NOT allowed to use the PyUnit
hooks; they are reserved by PloneTestCase!

• PloneTestCase provides its own hooks,
notably afterSetUp(), beforeTearDown(),
and afterClear().

PloneTestCase is of course ultimately derived from
unittest.TestCase!
afterSetUp() is the most useful hook, by a wide margin.

23

Dummy Product

cd $INSTANCE_HOME/Products

mkdir Tutorial

touch Tutorial/__init__.py

mkdir Tutorial/tests

touch Tutorial/tests/__init__.py

cd Tutorial/tests

This being a tutorial, we have to start actually doing
things

24

testAnswer

• Type in the PyUnit test from before, name
the file testAnswer.py.

• How would you run it?

25

Correct!

cd $INSTANCE_HOME/Products/Tutorial

$ZOPE_HOME/bin/test.py -v \

 --libdir . testAnswer

26

testPloneAnswer

• Now type in the second test and name the
file testPloneAnswer.py. Then run it:

cd $INSTANCE_HOME/Products/Tutorial

$ZOPE_HOME/bin/test.py -v \

 --config-file ../../etc/zope.conf \

 --libdir . testPloneAnswer

We need to pass a config file because this is a Zope test.
27

Running All Tests

cd $INSTANCE_HOME/Products/Tutorial

$ZOPE_HOME/bin/test.py -v \

 --config-file ../../etc/zope.conf \

 --libdir .

Without a module filter, all tests will be run.
28

Writing Interesting
Tests

29

Default Fixture

• To write less boring tests, we need to know
more about the test environment.

• We have already seen that PloneTestCase
creates a Plone site for us, and it doesn’t
stop there...

30

What Do We Want?
• An Application object

• A REQUEST

• A Plone Site object

• A User Folder

• A default user with role “Member”

• A member area for the default user

• And, we want the default user to be logged in

31

Fixture Attributes

• self.app

• self.app.REQUEST

• self.portal

• self.portal.acl_users

• self.folder

This is how PloneTestCase provides access to the
individual fixture components.

32

Err... ?

• You feel a little uneasy about proceeding?

• You don’t think you have fully grasped this
“default fixture” thing?

• Excellent!

• That’s a perfect time to write some tests...

33

Download

• At this point you will want to download
the Tutorial product from:

http://zope.org/Members/shh/Tutorial

Because this is a testing tutorial and not a typing tutorial,
we will download the rest of the example tests.

34

testFixture
from Products.CMFPlone.tests import PloneTestCase

from AccessControl import getSecurityManager

portal_name = PloneTestCase.portal_name

default_user = PloneTestCase.default_user

class FixtureTest(PloneTestCase.PloneTestCase):

 def testApp(self):

 self.failUnless(’Control_Panel’ in self.app.objectIds())

 def testPortal(self):

 self.failUnless(portal_name in self.app.objectIds())

 def testMembersFolder(self):

 self.failUnless(’Members’ in self.portal.objectIds())

 def testUserFolder(self):

 self.failUnless(’acl_users’ in self.portal.objectIds())

35

testFixture II
 def testUser(self):

 uf = self.portal.acl_users

 self.failIf(uf.getUserById(default_user) is None)

 def testMemberArea(self):

 self.assertEqual(

 self.portal.Members[default_user], self.folder)

 def testRequest(self):

 self.failUnless(

 self.app.REQUEST.has_key(’SERVER_URL’))

 def testAcquiredRequest(self):

 self.failUnless(

 self.folder.REQUEST.has_key(’SERVER_URL’))

 def testLoggedIn(self):

 auth_user = getSecurityManager().getUser().getId()

 self.assertEqual(auth_user, default_user)

You can surely think of more test you want to right. Like,
does the default user really have the Member role?

36

testFixture III
def test_suite():

 from unittest import TestSuite, makeSuite

 suite = TestSuite()

 suite.addTest(makeSuite(FixtureTest))

 return suite

37

Observations

• PloneTestCase must be imported first thing

• There are methods that help with making
assertions: failUnless(), assertEqual(), etc.

• The Zope API works

• Acquisition works

-> So we *do* have a fully featured Zope/Plone
environment after all

38

testDocument
from Products.CMFPlone.tests import PloneTestCase

from Acquisition import aq_base

class DocumentTest(PloneTestCase.PloneTestCase):

 def afterSetUp(self):

 self.catalog = self.portal.portal_catalog

 self.workflow = self.portal.portal_workflow

 self.folder.invokeFactory(’Document’, id=’doc’)

 def testAddDocument(self):

 self.failUnless(hasattr(aq_base(self.folder), ‘doc’))

 def testEditDocument(self):

 self.folder.doc.edit(text_format=’plain’, text=’foo’)

 self.assertEqual(self.folder.doc.EditableBody(), ‘foo’)

 def testFindDocument(self):

 self.failUnless(self.catalog(id=’doc’))

39

testDocument II
 def testPublishDocument(self):

 self.setRoles([’Reviewer’])

 self.workflow.doActionFor(self.folder.doc, ‘publish’)

 state = self.workflow.getInfoFor(

 self.folder.doc, ‘review_state’)

 self.assertEqual(state, ‘published’)

def test_suite():

 from unittest import TestSuite, makeSuite

 suite = TestSuite()

 suite.addTest(makeSuite(DocumentTest))

 return suite

40

Observations

• The Plone site works. We can add
documents, edit them, and find them in the
catalog. We can even use workflow!

• We create new objects in our member
area: self.folder

• We can use the setRoles() API to change
our roles

41

Observations II

• We have to strip off undesired acquisition
wrappers using aq_base()

• We don’t need to clean up!

42

testSecurity
from Products.CMFPlone.tests import PloneTestCase

from AccessControl import Unauthorized

default_user = PloneTestCase.default_user

class SecurityTest(PloneTestCase.PloneTestCase):

 def afterSetUp(self):

 self.folder.invokeFactory(’Document’, id=’doc’)

 self.folder.doc.manage_permission(

 ‘View’, [’Manager’], acquire=0)

 def testOwnerViewsDocument(self):

 self.assertRaises(Unauthorized,

 self.folder.restrictedTraverse, ‘doc’)

 def testManagerViewsDocument(self):

 self.setRoles([’Manager’])

 self.folder.restrictedTraverse(’doc’)

43

testSecurity II
class MultiUserTest(PloneTestCase.PloneTestCase):

 def afterSetUp(self):

 self.membership = self.portal.portal_membership

 self.membership.addMember(

 ’user2’, ‘secret’, [’Member’], [])

 self.folder.invokeFactory(’Document’, id=’doc’)

 self.folder.doc.manage_permission(

 ‘View’, [’Owner’], acquire=0)

 def testOwnerViewsDocument(self):

 self.folder.restrictedTraverse(’doc’)

 def testMemberViewsDocument(self):

 self.login(’user2’)

 self.assertRaises(Unauthorized,

 self.folder.restrictedTraverse, ’doc’)

44

testSecurity III
 def testAnonymousViewsDocument(self):

 self.logout()

 self.assertRaises(Unauthorized,

 self.folder.restrictedTraverse, ’doc’)

def test_suite():

 from unittest import TestSuite, makeSuite

 suite = TestSuite()

 suite.addTest(makeSuite(SecurityTest))

 suite.addTest(makeSuite(MultiUserTest))

 return suite

45

Observations

• We need to trigger Zope security
validation by explicitly calling
restrictedTraverse()

• We can use the login() API to log in as
another user

• We can use the logout() API to log out and
become Anonymous User

46

Observations II

• We can write more than one test case in a
single module, as long as we add all of them
to the test suite.

47

Summary

• We downloaded and installed required
software

• We successfully ran various kinds of tests

• We created a product including a test suite

48

Summary II

• We learned about the default fixture and
wrote tests to make sure we got that
correctly.

• We wrote our first PloneTestCase tests

49

Shameless Plug

Should you be interested in an intense 2 or 3-
day testing workshop for yourself and your
development team contact:

info@plonesolutions.com

50

Stay With Us!
Until after the break

51

Future

52

Standalone Version

• PloneTestCase will we moved out of
CMFPlone into its own product

• Test authors will get control over the
default Plone site

53

Standalone Example

from Products.PloneTestCase import PloneTestCase

PloneTestCase.installProduct(’Foo’)

PloneTestCase.setupPloneSite(products=(’Foo’,))

class FooTest(PloneTestCase.PloneTestCase):

 ...

54

CMFTestCase

55

“Little Brother”

• CMFTestCase provides a CMFDefault
environment and portal.

• CMF is more lightweight than Plone which
makes the tests import and run significantly
faster.

56

CTC Example

from Products.CMFTestCase import CMFTestCase

CMFTestCase.installProduct(’Foo’)

CMFTestCase.setupCMFSite(products=(’Foo’,))

class FooTest(CMFTestCase.CMFTestCase):

 ...

57

testrunner.py

58

Pocket Chain Saw

• testrunner.py knows about instance homes

• testrunner.py typically can do with less
command line real estate than test.py

Note that test.py does *not* know about instance homes;
it only knows about config files.

59

Examples
cd $INSTANCE_HOME/Products

$ZOPE_HOME/bin/testrunner.py -qid CMFPlone/tests

$ZOPE_HOME/bin/testrunner.py -q \

 -I $INSTANCE_HOME \

 -d CMFPlone/tests

cd $INSTANCE_HOME/Products/CMFPlone/tests

$ZOPE_HOME/bin/testrunner.py -qia

$ZOPE_HOME/bin/testrunner.py -qif testCheckId.py

testrunner.py can detect instance homes. testrunner.py
can run tests from inside the “tests” package.
testrunner.py can NOT run Zope’s test suite.

60

When to Write Tests?

61

When to Write Tests?

• First!

• To raise confidence in existing code

• To expose a bug and to prove it is fixed

• Whenever we feel stupid

1. TDD by Kent Beck!
2. That’s what we did with Plone, BTW (I guarantee you a
very sobering experience).
3. “A bug is a test not written.”

62

Thanks!

63

