
Zope
Document Template
Markup Language
Reference

Document Revision 2.1.0, 1999/12/17
For Zope version 2.1.0

Modified by Pamela Crosby

Copyright © Digital Creations

Table of Contents
Table of Contents

List of Tables ..vii

Introduction .. 1

General Information ... 3
DTML Tag Syntax 3
Server Side Include Format Syntax 5
Alternate Python String Format Syntax 5
Common Tag Attributes 7

The name attribute 7
The expr attribute 7

Expression syntax 7
Variable lookup 8
The special namespace variable, _ 8

Name Lookup 15
Access Control 18
Using Document Templates from Python 21

Creating document templates 21
Using document templates 22
Using document templates with ZPublisher 22

The dtml-var Tag .. 23
Custom, Special, C, and Empty Formats 23
Null Values 24
Truncation 25
A dtml-var Tag Example, the Default Document Source 25

Conditional Insertion, the dtml-if and dtml-unless Tags.. 27

Iterative Insertion, the dtml-in Tag... 29
The dtml-else Tag as an Intermediate Tag in the dtml-in Tag 29
Variables Defined by the dtml-in Tag 31
Summary Statistics 33
Grouping Variables 33
Batch Processing 33

Orphan rows 35
Overlapping batches 37
Showing row number and row data in previous and next batch hyperlinks. 37
Showing information about multiple batches 39

Displaying Objects with the dtml-with Tag ... 41
Using the only Attribute to Limit the Namespace 41

Multiple assignments with the dtml-let Tag ... 42
v

Table of Contents
Evaluating Names or Expressions without Generating Text Using the dtml-call Tag .43

Reporting Errors with the dtml-raise Tag...45

Exception Handling with the dtml-try Tag...46
The dtml-try tag optional dtml-else block 47
The dtml-try tag optional dtml-finally block 47

Excluding Source Text with the dtml-comment Tag ..48

Returning Data using the dtml-return tag...49

Displaying Information Hierarchically: the dtml-tree tag ..50

Sending Mail: the dtml-sendmail tag ...54

Sending Attachments with the dtml-mime Tag ..56

Appendix A, Date-time data...57
vi

List of Tables
List of Tables

TABLE 1. Expression examples 8
TABLE 2. Available attributes in the special variable, _ 9
TABLE 3. Attributes defined by the math module 10
TABLE 4. Attributes defined by the random module 11
TABLE 5. Attributes defined by the string module 12
TABLE 6. Attributes defined by the whrandom module 13
TABLE 7. Simplest-case steps for looking up names 15
TABLE 8. Zope-defined Web request variables 16
TABLE 9. Attributes of the REQUEST variable. 16
TABLE 10. Attributes of the RESPONSE variable 17
TABLE 11. CGI-defined Web request variables 17
TABLE 12. Document template classes 21
TABLE 13. Standard document template creation arguments. 21
TABLE 14. Standard arguments for calling document templates. 22
TABLE 15. dtml-var tag attributes 23
TABLE 16. Special formats that may be used with the var tag fmt attribute 24
TABLE 17. C-style specifiers for the fmt attribute 24
TABLE 18. dtml-in tag attributes 30
TABLE 19. Item variables defined by the dtml-in tag 32
TABLE 20. Summary statistic variables defined by the dtml-in tag 33
TABLE 21. Special variables for group processing 33
TABLE 22. Batch-processing variables 34
TABLE 23. Attributes of batch objects used when iterating over next-batches and previous-batches variables. 34
TABLE 24. 35
TABLE 24. Query strings and previous batch URL and next batch URL for the batches shown in figure 7 37
TABLE 25. dtml-tree tag attributes. 51
TABLE 26. Variables set by the dtml-tree tag when rendering sub-objects. 52
TABLE 27. Variable that influence the dtml-tree tag 53
TABLE 28. dtml-sendmail tag attributes 55
TABLE 29. dtml-mime tag attributes 56
TABLE 30. Custom formats for date-time data 57
vii

List of Tables
viii

Introduction
Introduction

Audience: Developer

The Zope Document Template Markup Language (DTML) is a facility for generating textual information using a template
document and application information stored in Zope. It is used in Zope primarily to generate Hypertext Markup
Language (HTML) files, but it can also be used to create other types of textual information. For example, it is used to
generate Structured Query Language (SQL) commands in Zope SQL Methods.

The DTML facility is used to convert from document template source text to rendered text. Document template source
text consists of ordinary text interspersed with DTML “markup” tags.

Purpose of DTML Reference

The purpose of the DTML Reference is to provide a reference dictionary document for the many DTML tags available in
Zope and to help programmers in understanding how to implement DTML. The first portion of the guide describes the
syntax of DTML tags and provides a number of simple examples of document template source texts. The second section
describes the DTML tags in detail.
Zope Document Template Markup Language Reference 1

Purpose of DTML Reference
2 Zope Document Template Markup Language Reference

General Information
General Information

DTML Tag Syntax

The DTML Tag is supported by three syntaxes.1 This includes the DTML document templates, server-side includes and
Python string formats. When using document templates from Python, the syntax used depends on the document template
class used (or subclasses). The server-side-include new DTML syntax described here is used by the classes
DocumentTemplate.HTML and DocumentTemplate.HTMLFile.

The syntax formats are shown below:

• <dtml-name>

• %(name)x

• <!--#name-->

The syntax used by DTML to indicate text substitution is based standard tag name attribute format used in similar
templates. A DTML tag is of the form:

<dtml-tag name attribute1="value1" attribute2="value2" ... >

The tag name identifies the tag type. Following the tag name, are typically one or more attributes which indicate where the
tag’s data is found and how that data is to be inserted. Sometimes, attribute values can be omitted and quotation marks
around attribute values can be omitted if the values do not contain a space, tab, new-line character, equal sign or double
quotation marks.

<dtml-var date fmt=Date>
<dtml-var name="standard_html_header">
<dtml-with subfolder>

The most common tag is the dtml-var tag. The var tag is used to substitute variable data into text. Suppose we want to
create a greeting with the variable, input_name. We might use a document template like the following:

Hello <dtml-var name="input_name" capitalize>!

This example uses two attributes, name and capitalize. The name attribute is used to specify a variable name. Typically, a
variable name refers to data in World Wide Web (WWW) requests or properties of Zope objects, like folders. Because of
the name attribute’s frequent usage, there exists a hand version of the name attribute in which the attribute name is
omitted:

Hello <dtml-var input_name capitalize>!

When using the shorthand form of the name attribute, the value is the first attribute in the tag and is not enclosed in
quotation marks.

1. It is also possible to define additional syntaxes, although the mechanism for doing this is not currently documented.
For example, a syntax that is similar to the syntax used by active server pages has been developed.
Zope Document Template Markup Language Reference 3

DTML Tag Syntax
A similar shorthand notation exists for the dtml-expr attribute. The expr attribute is used to provide computational
expressions, as in:

<dtml-if expr="age > 18">

This may be shortened by eliminating the attribute name, as in:

<dtml-if "age > 18">

Like in the name attribute, the attribute value is the first attribute in the tag and is not enclosed in quotation marks.

The capitalize attribute illustrates the use of an attribute in which a value, or argument, is not defined1. The capitalize
attribute indicates that the first letter of the inserted text should be capitalized. Suppose the document template source
from the previous example is evaluated with the input name, “world”, then the text output would be:

Hello World!

The dtml-var tag is called a singleton tag, because it does not contain any other tags. Tags which are duplex contain
bracketed text which may contain other DTML tags. Duplex tags require a matching end tag. The name of the end tag is
the same as the start tag, except that it contains a "/" or an "end" prefix. End tags do not have attributes. A commonly
used duplex tag is the dtml-if tag:

<dtml-if input_name>
 Hello <dtml-var input_name>.
</dtml-if>

In this example, if the variable, input_name, has not been provided or is an empty string, then the greeting is omitted.

A non-empty tag can also have intermediate tags. These intermediate tags serve to break the non-empty tag into two or
more sections. For example the dtml-if tag can use an intermediate dtml-else tag, as in:

<dtml-if input_name>
 Hello <dtml-var input_name>.
<dtml-else>
 Have we been introduced?
<dtml-endif>

Note that in this case, the alternate prefix of the end tag is used.

1. Actually, all attributes have values. Certain attributes, like the capitalize attribute, have default values which are set when a value is
not provided within the tag. The only case in which a value must be provided for this type of attribute is when the attribute is the
first attribute in the tag. Without a value, the attribute would be confused with a name attribute value. For attributes like capitalize, a
value of "yes", "on" or 1 is usually provided, as in: <dtml-var capitalize=1 name=id>. The capitalize attribute is an
example of a flag. The presence of a flag typically indicates that some normally disabled option should be enabled, thus the values
of "yes", "on" or 1.
4 Zope Document Template Markup Language Reference

Server Side Include Format Syntax
Intermediate tags can have attributes, as in:

<dtml-if input_name>
 Hello <dtml-var input_name>.
<dtml-elif nick_name>
 Hi <dtml-var nick_name>.
<dtml-else>
 Have we been introduced?
</dtml-if>

In the example above, there is one non-empty tag, dtml-if that uses two intermediate tags, dtml-elif and dtml-else, and an
end tag, /dtml-if.

Server Side Include Format Syntax

Any number of line endings, tabs or spaces may be placed between the pound character (#), the tag name, attributes or the
end of a tag. This format is still valid for the older versions of Zope and DTML. The server side includes format is <!--
#command tag1="value1" tag2="value2"-->. The older versions of Zope used this format for the dtml code. You will
still see examples using this syntax. For example, the following are all valid tags which are based on the server side
includes format:

<!--#var x--> <!--#var standard_html_footer-->
 <!--#var some_really_long_name--.
<!--#var and_another_rather_long_one-->
<!--#if input_name--> <!--#/if-->

Alternate Python String Format Syntax
This section describes the extended Python string format syntax. The extended Python string format syntax is used by the
Python classes DocumentTemplate.String and DocumentTemplate.File. This format is based on the insertion-by-name
format strings of Python with additional format characters, ’[’ and ’]’ to indicate block boundaries. In addition, attributes
may be used within formats to control how insertion is done. For example:

%(date fmt=DayOfWeek upper)s

causes the contents of variable ’date’ to be inserted using custom format ’DayOfWeek’ and with all lower case letters
converted to upper case.

Document template strings use an extended form of python string formatting. To insert a named value, simply include
text of the form:

%(name)x
Zope Document Template Markup Language Reference 5

Alternate Python String Format Syntax
where ’name’ is the name of the value and ’x’ is a format specification, such as ’12.2d’. To introduce a block such as
an ’if’ or an ’in’ or a block continuation, such as an ’else’, use ’[’ as the format specification. To terminate a
block, use ’]’ as the format specification, as in:

%(if input_name)[
 Hello %(var input_name size=16 etc="...")s.
%(elif nick_name)[
 Hi %(var nick_name capitalize)s.
%(else)[
 Have we been introduced?
%(/if)]

The form:

%(name)x

is a shorthand for :

%(var name)x

In most cases, the tag name, ’var’ can be omitted. It must be included when:

- The variable to be inserted is named ’var’ and

- when using the expr attribute:

%(var expr="foo+1")s
6 Zope Document Template Markup Language Reference

Common Tag Attributes
Common Tag Attributes
The previous section described two attributes that are used by most DTML tags, the name and expr attributes. Both of
these attributes are used to identify or compute data used by the tag.

The name attribute
The name attribute is used to obtain data by name. The data is looked up using the rules described in the section “Name
Lookup” below. The name attribute is special since there exists a shortened version of the attribute, as described in the
section “DTML Tag Syntax” above.

When the value of a name attribute is looked up, the value is automatically called, if possible. If the value is a Zope
Document or Python document template, it is rendered before being given to the tag that uses the name attribute. For
example, most Zope documents begin with a dtml-var tag:

<dtml-var standard_html_header>

standard_html_header is a Zope document which provides standard HTML to be included at the top of every page. When
the var tag above is used, the DTML in standard_html_header is rendered and the result is inserted in the current
document.

If the value of a name attribute is a function1 that is called with no arguments, then the result of the function call is given
to the tag using the name attribute.

When the name attribute is used in the dtml-if, dtml-elif, dtml-unless, dtml-in or dtml-with tag, the value associated with
the name is cached, causing references to the name in enclosed text to be faster than the initial reference. This is especially
useful when the name refers to a function which is expensive to compute. For example:

<dtml-if reallyExpensiveFunction>
 <dtml-var reallyExpensiveFunction>
</dtml-if>

The dtml-var tag uses the cached value for reallyExpensiveFunction. Note that tags, such as dtml-in and dtml-

with, which introduce new variables may introduce a new value for the given name, causing the cached value to be
overridden.

The expr attribute
The expr attribute allows complex expressions to be evaluated. The expression used in an expr attribute is enclosed in
double quotation marks. Thus for differentiation, double quotation marks are not allowed within the expression.

Expression syntax

The expression syntax is that of the Python2 programming language and is similar to the syntax of other common
programming languages like C or Java. Table 1 provides examples of simple expressions by giving the syntax and
capabilities of each expression.

1. In this context, “function” refers any “callable” object. Examples of an callable objects include Zope Database Methods and Zope
Network Clients, DTML Methods.

2. For a detailed description of Python syntax, see the Python documentation at http://www.python.org/doc/.
Zope Document Template Markup Language Reference 7

Variable lookup
Variable lookup
The variable names used in an expr expression are looked up according to the rules described in “Name Lookup”
Reference. Looked up values are not “called” as they are when the name attribute is used. In the expressions found in
table 1, the name x, func, a, b, obj, age, and status are variable names, while the name meth and title are
object attribute names.

Variable names must begin with a letter and contain only letters, digits, and underscore characters. To access a variable
with a name that does not follow these rules, it is necessary to use the special variable, _, described in “The special
namespace variable, _” below.

The special namespace variable, _
A special variable, _, is defined for use in expr expressions. The _ variable provides access to the DTML "namespace,"
which is an object used to look up variables when rendering DTML. The _ variable can be used to look up names directly:

<dtml-if "_[’sequence-length’] > 20">

The _ variable is especially useful for accessing variables with names that contain special characters, like dashes in the
case above.

The _ variable has a method, has_key, which can be used to check whether or not a variable is in the namespace:

<dtml-if "_.has_key(’sequence-length’)">

Note that when a callable value is looked up with the _ variable, it is called automatically, as is done with the name
attribute. In the case where it is undesirable to have the value called automatically, the getitem method of the _ variable is
used to look up the value. The getitem method accepts two arguments, the name to be looked up and a flag indicating
whether or not the value is to be returned:

<dtml-var "_.getitem(name, 0)">

Expression Explanation

x*2+3 Numeric expression

func(a,b) Function call

obj.title Get attribute title from obj

obj.meth(a,b) Invoke methodi meth of obj with arguments a and b

(age < 12 or age > 65) and
status == ’student’

A boolean (true/false) test.

REQUEST[’HTTP_REFERER’] Look up a value from REQUEST using the key ’HTTP_REFERER’

TABLE 1. Expression examples

i. A method is like a function except, a method is an attribute of an object and can use the object’s data in computation.
8 Zope Document Template Markup Language Reference

The special namespace variable, _
Name Description

abs(X) Return the absolute value of a number.

chr(I) Return a string of one character whose ASCII code is integer I, e.g., chr(97) returns the string ’a’.
This is the inverse of ord(). The argument must be in the range 0-255, inclusive.

DateTime() Create a DateTime object from zero or more arguments. See “Appendix A, Date-time data” on page 41.

divmod(A,B) Take two numbers as arguments and return a pair of integers consisting of their integer quotient and
remainder. With mixed operand types, the rules for binary arithmetic operators apply. For integers, the result
is the same as(A/B,A%B). For floating point numbers the result is the same
as(math.floor(A/B),A%B).

float(X) Convert a number to floating point. The argument may be a plain or long integer or a floating point number.

getattr(O,name) Get the named attribute from an object.

hasattr(O,name) Test whether the name can be found in the namespace.

getitem(name,flag) Lookup a name in the namespace. If the value is callable and the flag is true, then the result of calling the
value is returned, otherwise the value is returned. flag defaults to false.

hash(O) Return the 32-bit integer hash value of the object.

hex(X) Convert an integer to a hexadecimal string.

int(X) Convert a number to an integer.

len(S) Return the length (the number of items) of a collection of items.

math The math module (table 3), which defines mathematical functions.

max(S) Return the largest item of a non-empty sequence.

min(S) Return the smallest item of a non-empty sequence.

namespace(
 name1=value1,
 name2=value2,

...)

The namespace function can be used with the in tag to assign variables for use within a section of DTML.
The function accepts any number of “keyword” arguments, which are given as name=value pairs.

None A special value that means “nothing”.

oct(X) Convert an integer.

ord(C) Return the ASCII value of a string of one character. E.g., ord(’a’) returns the integer 97. This is the
inverse of chr().

pow(X,Y) Return X to the power Y. The arguments must have numeric types. With mixed operand types, the rules for
binary arithmetic operators apply. The effective operand type is also the type of the result; if the result is not
expressible in this type, the function raises an exception, e.g. pow(2,-1) and pow(2,35000) raise
exceptions.

random The random module (table 4), which defines various random-number generating functions.

round(X,N) Return the floating point value X rounded to N digits after the decimal point. If N is omitted, the default
value is zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the
power minus N; if two multiples are equally close, rounding is done away from 0 (so e.g. round(0.5)
is 1.0 and round(-0.5) is -1.0).

str(O) Return a string containing a representation of an object.

string The string module, which defines string functions.

whrandom The whrandom module (Figure 6, “Attributes defined by the whrandom module,” on page 23), which
defines random-number generating functions using the Wichmann-Hill pseudo-random number generator.

TABLE 2. Available attributes in the special variable, _
Zope Document Template Markup Language Reference 9

The special namespace variable, _
Name Description

acos(X) Compute the inverse cosine, in radians, of X.

asin(X) Compute the inverse sine, in radians, of X.

atan(X) Compute the inverse tangent, in radians, of X.

atan2(X,Y) Compute the inverse tangent, in radians, of the quotient of X and Y.

ceil(X) Return the smallest integer that is greater than X.

cos(X) Compute the cosine of X, which is in radians.

cosh(X) Compute the hyperbolic cosine of X.

e The base of the natural logarithms.

exp(X) Compute the exponential function of X, or e to the power X, where e is the base of the natural logarithms.

fabs(X) Compute a floating-point absolute value of the number, X.

floor(X) Return the largest integer less than X.

fmod(X,Y) Return the remainder of the division of X by Y.

frexp(X) Return the mantissa and exponent in base 2 of the floating-point value of X, such that absolute value mantissa
is between 0.5 and 1.0 or is 0.

hypot(X,Y) Compute the hypotenuse of a right triangle with sides X and Y.

ldexp(X,Y) Return X times two to the power of Y.

log(X) Compute the natural (base e) logarithm of X.

log10(X) Compute the common (base 10) logarithm of X.

modf(X) Break a number into its whole and fractional parts.

pi The mathematical constant, pi

pow(X,Y) Raise X to the power Y.

sin(X) Compute the sine of X.

sinh(X) Compute the hyperbolic sine of X.

sqrt(X) Compute the square-root of X.

tan(X) Compute the tangent of X.

tanh(X) Compute the hyperbolic tangent of X.

TABLE 3. Attributes defined by the math module
10 Zope Document Template Markup Language Reference

The special namespace variable, _
Name Description

betavariate (alpha, beta) Beta distribution. Conditions on the parameters are alpha >- 1 and beta > -1. Returned values will
range between 0 and 1.

choice (seq) Choose a random element from the non-empty sequence seq and return it.

cunifvariate (mean, arc) Circular uniform distribution. mean is the mean angle, and arc is the range of the distribution,
centered around the mean angle. Both values must be expressed in radians, and can range

between 0 and . Returned values will range between mean - arc/2 and mean + arc/2.

expovariate (lambd) Exponential distribution. lambd is 1.0 divided by the desired mean. (The parameter would be
called "lambda", but that is a reserved word in Python.) Returned values will range from 0 to
positive infinity.

gamma (alpha, beta) Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > -1 and
beta > 0.

gauss (mu, sigma) Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster
than the normalvariate() function defined below.

lognormvariate (mu, sigma) Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal
distribution with mean mu and standard deviation sigma. mu can have any value, and sigma must
be greater than zero.

normalvariate (mu, sigma) Normal distribution. mu is the mean, and sigma is the standard deviation.

paretovariate (alpha) Pareto distribution. alpha is the shape parameter.

randint (a, b) Return a random integer N, such that a<=N<=b

random() Return a random real number N, such that 0<=N<1.

uniform (a, b) Return a random real number N, such that a<=N<b.

vonmisesvariate (mu, kappa) mu is the mean angle, expressed in radians between 0 and pi, and kappa is the concentration
parameter, which must be greater then or equal to zero. If kappa is equal to zero, this distribution
reduces to a uniform random angle over the range 0 to .

weibullvariate (alpha, beta) Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

TABLE 4. Attributes defined by the random module

π

Zope Document Template Markup Language Reference 11

The special namespace variable, _
Name Description

digits The string ’0123456789’.

hexdigits The string ‘0123456789abcdefABCDEF’.

letters The concatenation of the strings lowercase’ and uppercase’ described below.

lowercase A string containing all the characters that are considered lowercase letters. On most systems this
is the string ‘abcdefghijklmnopqrstuvwxyz’.

octdigits The string ‘01234567’.

uppercase A string containing all the characters that are considered uppercase letters. On most systems this
is the string ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’.

whitespace A string containing all characters that are considered "white space". On most systems this
includes the characters space, tab, line feed, return, form feed, and vertical tab.

atof(S) Convert a string to a floating point number.

atoi(S[, BASE]) Convert string S to an integer in the given BASE. The string must consist of one or more digits,
optionally preceded by a sign (+’ or -’). The BASE defaults to 10. If the base is 0, a default base
is chosen depending on the leading characters of the string (after stripping the sign): '0x' or '0X'
means 16, '0' means 8, anything else means 10. If BASE is 16, a leading '0x' or '0X' is always
accepted.

capitalize(W) Capitalize the first character of the argument.

capwords(S) Convert sequences of spaces, tabs, new-line characters, and returns to single spaces and convert
every lower-case letter at the beginning of the string or that follows space to an uppercase letter.

find(S, SUB[, START]) Return the lowest index in S not smaller than START where the sub-string SUB is found. Return
-1 when SUB does not occur as a sub-string of S with index at least START. If START is
omitted, the default value is 0. If START is negative, then it is added to the length of the string.

rfind(S, SUB[, START]) Like find but find the highest index.

index(S, SUB[, START]) Like find but raise a ValueError exception when the substring is not found.

rindex(S, SUB[, START]) Like rfind but raise ValueError exception when the substring is not found.

count(S, SUB[, START]) Return the number of (non-overlapping) occurrences of substring SUB in string S with index at
least START. If START is omitted, the default value is 0. If START is negative, then it is added
to the length of the string.

TABLE 5. Attributes defined by the string module
12 Zope Document Template Markup Language Reference

The special namespace variable, _
lower(S) Convert letters to lower case.

maketrans(FROM, TO) Return a translation table suitable for passing to string.translate, that will map each character in
FROM into the character at the same position in TO; FROM and TO must have the same length.

split(S[, SEP[, MAX]]) Return a list of the words of the string S. If the optional second argument SEP is absent or None,
the words are separated by arbitrary strings of white-space characters (space, tab, new line,
return, form feed). If the second argument SEP is present and not None, it specifies a string to be
used as the word separator. The returned list will then have one more items than the number of
non-overlapping occurrences of the separator in the string. The optional third argument MAX
defaults to 0. If it is nonzero, at most MAX number of splits occur, and the remainder of the
string is returned as the final element of the list (thus, the list will have at most MAX+1
elements).

join(WORDS[, SEP]) Concatenate a list or tuple of words with intervening occurrences of SEP. The default value for
SEP is a single space character. It is always true that string.join(string.split(S, SEP), SEP) equals
S.

lstrip(S) Remove leading white space from string S.

rstrip(S) Remove trailing white space from string S.

strip(S) Remove leading and trailing white space from string S.

swapcase(S) Convert lower case letters to upper case and vice versa.

translate(S, TABLE[, DELS]) Delete all characters from S that are in DELS (if present), and then translate the characters using
TABLE, which is a 256-character string giving the translation for each character value, indexed
by its ordinal.

upper(S) Convert letters to upper case.

ljust(S, WIDTH)

rjust(S, WIDTH)

center(S, WIDTH)

These functions respectively left-justify, right-justify and center a string in a field of given width.
They return a string that is at least WIDTH characters wide, created by padding the string S with
spaces until the given width on the right, left or both sides. The string is never truncated.

zfill(S, WIDTH) Pad a numeric string on the left with zero digits until the given width is reached. Strings starting
with a sign are handled properly.

Name Description

choice (seq) Choose a random element from the non-empty sequence seq and return it.

randint (a, b) Return a random integer N, such that a<=N<=b

random() Return a random real number N, such that 0<=N<1.

seed(X, Y, Z) Initialize the random number generator from the integers X, Y and Z.

uniform (a, b) Return a random real number N, such that a<=N<b.

TABLE 6. Attributes defined by the whrandom module

Name Description

TABLE 5. Attributes defined by the string module
Zope Document Template Markup Language Reference 13

The special namespace variable, _
14 Zope Document Template Markup Language Reference

Name Lookup
Name Lookup
When a variable name is used in a DTML tag, such as a dtml-var tag or an expr attribute expression, that name must be
resolved. Table 7 shows the steps taken to look up data in the simplest case.

There are two situations in which the search rules for the simplest case are modified. If a Zope object or Python document
template is called within a DTML expr attribute expression, then additional variables may be passed in. Variables passed
in take precedence over all variables described in Table 6.

Step Rule

1 When a document template is called from Python, the mapping object and keyword arguments supplied when calling the
document template are searched, with keyword arguments taking precedence over the mapping object.

2 When a document templates is called from Python, attributes, including inherited and acquired attributes, of the client
passed in the call to the document template are searched.

3 If DTML is used in a Zope DTML Method or Document and the variable name is document_id or
document_title, then the id or title of the document is used.

4 Attributes of the folder containing the DTML are searched. Attributes include objects in the contents of the folder,

properties of the folder, and other attributes defined by Zopei, such as ZopeTimeii. Folder attributes include the attributes
of folders containing the folder, with contained folders taking precedence over containing folders.

i. Zope defines a large number of attributes that are used by Zope itself. Many of these will become part of an official Zope
applications programming interface and will be documented in a forthcoming “Zope API Guide”.

ii. ZopeTime is a function that returns a date-time object giving the current time.

5 Search Zope-defined Web-request data (table 8).

6 Search variables defined in Web-request form data.

7 Search variables defined in Web-request cookies.

8 Search variables named URLn, where n is a digit. URL0 is the Request URL without a query string. URL1 is the same as
URL0 except that the last name in the URL is removed. URL2 is the same as URL0 except that the last two names are
removed, and so on. For example, if the request URL is http://digicool.com/A/B, then URL0, URL1, and
URL2 are respectively, http://digicool.com/A/B, http://digicool.com/A and
http://digicool.com. URL3 is undefined.

9 Search CGI-defined Web-request variables. See table 11 for a description of CGI-defined variables.

10 Search HTTP Headers. A variable name associated with a HTTP header consist of the HTTP header name, converted to
upper case, with the Prefix, HTTP_. For example, a HTTP Referer header, if present, can be accessed using the variable
name HTTP_REFERER.

11 Search variables named BASEn, where n is a digit. BASE0 is the prefix of the request URL up to, but not including, the
name of the Zope installation or module published by ZPublisher. BASE1 is the request URL up to and including the
name of the Zope installation or module published by ZPublisher. BASE2 is the request URL up to the name following
the name of the Zope installation or module published by ZPublisher, and so on. For example, assume that a Zope
installation or module published by ZPublisher has the URL: http://digicool.com/Demos/Plutonia
and that a request URL is http://digicool.com/Demos/Plutonia/Marketing. BASE0 is
http://digicool.com/Demos, BASE1 is http://digicool.com/Demos/Plutonia and
BASE2 is http://digicool.com/Demos/Plutonia/Marketing. BASE3 is undefined.

TABLE 7. Simplest-case steps for looking up names
Zope Document Template Markup Language Reference 15

Name Lookup
Some DTML tags define additional variables. Variables defined by DTML tags take precedence over variables described
in table 6. If tags are nested, variables defined in nested tags take precedence over variables defined in tags that are nested
in.

Names may not begin with an underscore, except in the special case of the _variable used in an expr attribute expression.

If a variable lookup yields an object that has security information, then access to the variable is allowed only if the user on
whose behalf the DTML is being rendered is allowed to access the object.

Name Description

AUTHENTICATED_USER An object that represents an authenticated user. When inserted into a DTML document, the value
is the user name. This object currently provides no public attributes. Note that this variable may
not be defined in Documents that are not protected by security information.

AUTHENTICATION_PATH The path to the object containing the user database folder which contained the definition for the
authenticated user.

PARENTS A sequence of ancestors of the object that was accessed in the current request. For example, if
the accessed object is a Document, then PARENTS[0] is the folder containing the document,
PARENTS[1] is the folder containing the folder containing the document, and so on.

REQUEST An object that represents the current request. This object may be used in an expr expression to
look up request data, including variables described in this table, CGI-defined variables (table
11), form variables, cookies, and HTTP headers. In addition, expr expressions may use request
attributes defined in table 9

RESPONSE An object that represents the response to the current request. This object is primarily useful in
expr expressions using attributes defined in table 10.

URL The URL used to invoke the request without the query string, if any.

TABLE 8. Zope-defined Web request variables

Name Description

cookies If a HTTP Cookie was included in the request, then this attribute is a dictionaryi containing the cookie data.
This allows cookie data to be looked up, even if a cookie name is the same as a form variable or an object
attribute name.

form If a request was initiated by submitting a form, then the form attribute is a dictionarya containing the form
data. This allows form data to be looked up, even if a form name is the same as an object attribute name.

has_key(name) Determine whether the REQUEST defines a given name.

set(name, value) Set a variable in the request.

TABLE 9. Attributes of the REQUEST variable.

i. Dictionaries are objects that support looking of data by name
(e.g. REQUEST.cookies[’CUST_ID’] to look up a cookie named CUST_ID). Dictionaries have has_key
methods for checking whether a dictionary contains a value (e.g. REQUEST.cookies.has_key(’CUST_ID’))
and methods keys, values, and items, for updating lists of dictionary keys, values, and key-value pairs
(e.g. REQUEST.cookies.keys() to obtain a list of cookie names).
16 Zope Document Template Markup Language Reference

Name Lookup
Name Description

setStatus(status) Set the HTTP status code of the response; the argument may either be an integer or a string from
{OK, Created, Accepted, NoContent, MovedPermanently, MovedTemporarily, NotModified,
BadRequest, Unauthorized, Forbidden, NotFound, InternalError, NotImplemented,
BadGateway, ServiceUnavailable} that will be converted to the correct integer value.

setHeader(name, value) Set a HTTP return header name with value, clearing the previous value set for the header, if one
exists.

getStatus() Return the current HTTP status code as an integer.

setBase(base) Set the base URL for the returned document.

expireCookie(name,...) Cause a HTTP cookie to be removed from the browser The response will include a HTTP header
that will remove the cookie corresponding to “name” on the client, if one exists. This is
accomplished by sending a new cookie with an already passed expiration date.

setCookie(name,value,...) Cause the response to include a HTTP header that sets a cookie on cookie-enabled browsers with
a key name and value. This overwrites any previously set value for the cookie in the Response
object. Additional cookie parameters can be included by supplying keyword arguments. The
valid cookie parameters are expires, domain, path, max_age, comment, and secure.

getHeader(name) Return the value associated with a HTTP return header or None if no such header has been set in
the response.

appendHeader(name, value) Set a HTTP return header “name” with value “value” and appending it following a comma if
there is a previous value set for the header.

redirect(location) Cause a redirection without raising an error.

TABLE 10. Attributes of the RESPONSE variable

Name Description

SERVER_SOFTWARE The name and version of the information server software answering the request. Format:
name/version

SERVER_NAME The server's host name, DNS alias or IP address as it would appear in self-referencing URLs.

GATEWAY_INTERFACE The revision of the CGI specification to which this server complies. Format: CGI/revision.

SERVER_PROTOCOL The name and revision of the information protocol this request came in with. Format:
protocol/revision

SERVER_PORT The port number to which the request was sent.

TABLE 11. CGI-defined Web request variables
Zope Document Template Markup Language Reference 17

Access Control
Access Control

Document templates provide a basic level of access control by preventing access to names beginning with an underscore1.
Additional control may be provided by providing document templates with a ’validate’ method. This would typically be
done by subclassing one or more of the DocumentTemplate classes.

If provided, the ’validate’ method will be called when objects are accessed as instance attributes or when they are accessed
through keyed access in an expression. The ’validate’ method will be called with five arguments:

1. The containing object that the object was accessed from,

2. The actual containing object that the object was found in, which may be different from the containing object the object
was accessed from, if the containing object supports acquisition,

3. The name used to access the object,

4. The object, and

5. The name-space object used to render the document template.

If a document template is called from Zope, then the name-space object will have an attribute AUTHENTICATED_USER
that is the user object that was found if Zope authenticated a user.

REQUEST_METHOD The method with which the request was made. For HTTP, this is "GET", "HEAD", "POST", etc.

PATH_INFO The part of the request URL, not counting the query string, following the name of the Zope
installation or module published by ZPublisher.

PATH_TRANSLATED The server provides a translated version of PATH_INFO, which takes the path and does any virtual-
to-physical mapping to it.

SCRIPT_NAME A virtual path to the script being executed, used for self-referencing URLs.

QUERY_STRING The information which follows the ? in the URL which referenced this script. This is the query
information.

REMOTE_HOST The host name making the request. If the server does not have this information, it should
REMOTE_ADDR and leave REMOTE_HOST unset.

REMOTE_ADDR The IP address of the remote host making the request.

AUTH_TYPE If the server supports user authentication, and the script is protected, this is the protocol-specific
authentication method used to validate the user.

REMOTE_USER If the server supports user authentication, and the script is protected, this is the username under
which it has been authenticated.

REMOTE_IDENT If the HTTP server supports RFC 931 identification, then this variable will be set to the remote
username retrieved from the server. Usage of this variable should be limited to logging only.

CONTENT_TYPE For queries which have attached information, such as HTTP POST and PUT, this is the content type
of the data.

CONTENT_LENGTH The length of the said content as given by the client.

1. The special variable, _, is an exception to this rule.

Name Description

TABLE 11. CGI-defined Web request variables
18 Zope Document Template Markup Language Reference

Access Control
Zope document objects provide their own validate method that implements the security rules of the Zope application
framework.
Zope Document Template Markup Language Reference 19

Access Control
20 Zope Document Template Markup Language Reference

Using Document Templates from Python
Using Document Templates from Python

Document templates are made available using the DocumentTemplate package1. The DocumentTemplate package
defines four classes to be used depending on whether source is stored in Python strings or in external files and on whether
the HTML server-side include syntax or the extended Python string format syntax is used. The four document template
classes are shown in table 11.

Creating document templates
Document templates are created by calling one of the classes listed in table 11. The source is passed as the first argument.
An optional mapping argument may be provided that contains names to be added to the document template namespace
when called and default values. An optional third argument may be provided to specify a namespace attribute for the
document template. The standard document template creation arguments are listed in table 12.

In addition to the standard creation arguments, additional keyword arguments may be provided to provide additional
names and default values for the document template name-space. For example, in:

results=DocumentTemplate.HTMLFile(’results.dtml’,
 {’table_name’: ’search results’, ’database’: ’data’},
 pid=os.getpid(),
 time=time.time
)

1. Python 1.4 users must use the ni module to enable packages. DocumentTemplate may also be used as a collection of modules,
rather than as a package by copying all of the DocumentTemplate modules except the __init__ module to a directory in the Python
path.

Class name Description

DocumentTemplate.HTML Source is provided as a Python string in HTML server-side-include syntax.

DocumentTemplate.HTMLFile Source is provided as an external file in HTML server-side-include syntax.

DocumentTemplate.String Source is provided as a Python string in extended Python string format syntax.

DocumentTemplate.File Source is provided as an external file in extended Python string format syntax.

TABLE 12. Document template classes

Argument
number

Argument
name Description

1 source_string

or file_name

The document template source. For classes String and HTML, this must be a string. For
classes File and HTMLFile, this is the name of an external file.

2 mapping A mapping object containing initial names and default values for the document template
name-space.

3 __name__ A value to use for the __name__ attribute of the document template object. This value can be
used by programming tools to identify the object. For example, Zope tracebacks include
__name__ values for instances of methods listed in tracebacks.

For classes String and HTML, the default __name__ value is ’<string>’ and for File and
HTMLFile classes, the default value is the file name.

TABLE 13. Standard document template creation arguments.
Zope Document Template Markup Language Reference 21

Using document templates
A document template is created using server-side-include syntax source from an external file named ’results.dtml’ and
with an initial name space that included the names ’table_name’, ’database’, ’pid’, and ’time’.

Using document templates
To generate text using a document template, the document template must be called. Arguments may be provided to
supply an object from which to get data, a mapping object to get data from, or keyword arguments containing additional
data. The standard arguments for calling document templates are shown in table 13.

Both of the standard arguments may be omitted. If the mapping argument is to be provided positionally without a client,
then a None must be passed as the client value, as in:

return results(None, {’search_results’: r})

Keyword arguments may be used to provide values, as in:

return results(search_results=r)

Using document templates with ZPublisher
Document templates may be published directly with ZPublisher. ZPublisher treats document templates as if they were
Python functions that accept the arguments named ’self’ and ’REQUEST’. The object traversed to get to the document
template is passed as the ’self’ argument and the request object is passed as the ’REQUEST’ argument. Typically,
document templates are defined as class attributes and passed class instances and request data, so instance and request
data can be used to generate text.

Document templates may also be used in Python functions called by document templates, as in:

def getResults(self, key, REQUEST):
 result_data=self.search(key)
 return self.resultTemplate(selfdocument, REQUEST,
search_results=result_data)

Be sure to call the document template. A common mistake is to return the document template directly, as in:

def getResults(self, key, REQUEST):
 result_data=self.search(key)
 return self.resultTemplate

ZPublisher does not attempt to call an object returned from a published object. Results of calling a published function are
simply converted to strings and returned. When a document template is converted to a string, the document template
source is returned. In the example above, the document template source, rather than the rendered template is returned.

Argument
number

Argument
name Description

1 client An object with attributes to be included in the document template namespace.

The client may be a single object, or a tuple of objects. If client is a tuple, then each object will be
added to the document template namespace in order.

2 mapping A mapping object with names and values to be added to the namespace.

TABLE 14. Standard arguments for calling document templates.
22 Zope Document Template Markup Language Reference

The dtml-var Tag
The dtml-var Tag

The dtml-var tag is used to perform simple variable substitutions. A number of attributes are provided to control how text
is to be inserted and formatted. The attributes are summarized in table 15.

Custom, Special, C, and Empty Formats
A custom format is used for the output of objects. The value of a custom format is the method name evaluated upon the
object to be inserted. The method should return an object that, when converted to a string, yields the desired text. For
example, the DTML source text:

 <dtml-var date fmt=DayOfWeek>

inserts the result of calling the method, DayOfWeek, with the value of the variable date. As the example suggests, the
most common use of custom formats in Zope is in the output of date-time data. The appendix A provides a summary of
the custom formats available for date-time data.

Attribute name
Needs an

argument? Description

name yes Insert the name of the variable.

expr yes Insert an expression that evaluates a value.

fmt yes Specify a data format, which may be a special, custom, or C-style format.

null yes Specify a string to be substituted for null values.

lower no Convert all upper-case letters to lower case

upper no Convert all lower-case letters to upper case.

capitalize no Convert the first character of the inserted to upper case.

spacify no Convert underscores in the inserted value to spaces.

thousands_commas no In a value containing all numbers, insert commas every three digits to the left of a decimal
point. For example, "12000 widgets" becomes "12,000 widgets".

html_quote no Convert characters that have special meaning in HTML to HTML character entities.

url_quote no Convert characters that have special meaning in URLs to HTML character entities using
decimal values.

url_quote_plus no Converts a single space character in URLs to the plus sign "+".

sql_quote no Convert single quotation mark to a pair of single quotation marks. This is needed to safely
include values in Standard Query Language (SQL) strings.

newline_to_br no Convert new-line characters, carriage-return characters, and new-line-carriage-return
character combinations to new-line characters followed by HTML break tags.

size yes Truncate the value to the given size.

etc yes Provide a string to be added to truncated text to indicate that truncation has occurred. The
default value is “...”.

missing no Provide a value to be used if the variable is missing, rather than raising an KeyError. Used
without an argument, it will provide an empty string.

TABLE 15. dtml-var tag attributes
Zope Document Template Markup Language Reference 23

Null Values
In addition to custom formats, a few special formats are defined by the var tag that can be used with the fmt attribute.
These are summarized in table 16.

In addition to custom and special formats, C1-style formats may also be used. A C-style format consists of text containing
a single conversion specification. A conversion specification consists of a percent sign, optionally followed by a flag, a
field width, a precision value, and a conversion specifier. A description of C-style formats is beyond the scope of this
document. For details on C-style formats, see a C-language reference manual. Not all conversion specifiers are supported
by DTML. Table 17 summarizes the conversion specifiers that DTML does support.

Null Values
In some applications, and especially in database applications, data variables may alternate between "good" and "null" or
"missing" values. A format that is used for good values may be inappropriate for null values. For this reason, the null
attribute can be used to specify text to be inserted for null values. Null values are defined as values which:

• Cannot be formatted with the specified format, and

• Are either the special Python value None or are false and yield an empty string when converted to a string.

Special Format Description

whole-dollars Show a numeric value with a dollar symbol.

dollars-and-cents Show a numeric value with a dollar symbol and two decimal places.

collection-length Get the length of a collection of objects.

structured-text Allows use of structured text as a special format.

TABLE 16. Special formats that may be used with the var tag fmt attribute

1. The C programming language.

Code Description

d Signed decimal integers

e Scientific notation

E Scientific notation (uppercase E)

f Decimal floating point

g Shorter of e or f

G Shorter of E or F

I Signed decimal integers

o Unsigned octal

s String of characters

u Unsigned decimal integers

x Unsigned hexadecimal lowercase

X Unsigned hexadecimal uppercase

TABLE 17. C-style specifiers for the fmt attribute
24 Zope Document Template Markup Language Reference

Truncation
For example, when showing a monetary value retrieved from a database that is either a number or a missing value, the
following variable insertion might be used:

 <dtml-var cost fmt="$%.2d" null=’n/a’>

Truncation
The attributes size and etc can be used to truncate long strings. If the size attribute is specified, then the string to be
inserted is truncated at the given length. If a space occurs in the second half of the truncated string, then the string is
further truncated to the right-most space. After truncation, the value given for the etc attribute is added to the string. If the
etc attribute is not provided, then "..." is used. For example, if the value of the variable color is "red yellow orange
green blue", then the tag:

<dtml-var spam size=10 etc="...">

inserts

red yellow...

A dtml-var Tag Example, the Default Document Source
When a Zope Document is created and no source is given, Zope supplies a default DTML source, as shown in figure 1.

In figure 1, several dtml-var tags are used. The first var tag inserts standard_html_header. Inserted in almost all Zope
Documents, the standard_html_header is a Document which provides a standard way to begin HTML documents in a
Zope installation. Thus, the inserted Document gives a Zope installation a common “look and feel”. The
standard_html_header document can be edited to customize a Zope installation and can be overridden in sub-folders to
give different parts of a site varying appearances. The document standard_html_footer provides a similar function for the
end of Zope documents. The var tags that insert standard_html_header and standard_html_footer illustrate the notion that
DTML documents can be called from another DTML document.

The variables title_or_id and title_and_id are methods defined on most Zope objects. The method title_or_id returns the
object’s title if the title is not blank, otherwise the object’s id is returned. The method title_and_id returns the title of an
object followed by the id in parentheses if the title is not blank, otherwise the id is returned. In figure 1, the title_or_id and
title_and_id methods are applied to the folder containing the document. The example illustrates the use of var tags to
insert the results of method calls.

The variables document_id and document_title simply return the id and title of the document.

<dtml-var standard_html_header>
<H2><dtml-var title_or_id> <dtml-var document_title></H2>
<P>This is the <dtml-var document_id> Document in
the <dtml-var title_and_id> Folder.</P>
<dtml-var standard_html_footer>

Figure 1. Default Zope Document source
Zope Document Template Markup Language Reference 25

A dtml-var Tag Example, the Default Document Source
26 Zope Document Template Markup Language Reference

Conditional Insertion, the dtml-if and dtml-unless Tags
Conditional Insertion, the dtml-if and dtml-unless
Tags

Occasionally, the text to be included in a document is dependent upon some data. The if tag is provided to support the
conditional insertion of text based on DTML variables or expressions. As described in “DTML Tag Syntax”, the dtml-if
tag has four forms:

1. An dtml-if tag, with a closing /dtml-if tag,

2. An dtml-if tag with an dtml-else tag and a closing /dtml-if tag.

3. An dtml-if tag with one or more dtml-elif tags, an dtml-else tag, and a closing /dtml-if tag, and

4. An dtml-if tag with one or more dtml-elif tags, no dtml-else tag, and a closing /if tag.

The dtml-if tag works in a straightforward manner. The variable or expression given in the dtml-if tag is evaluated. If the

variable or expression value is true1, then the text following the dtml-if tag is inserted. If the variable or expression value
is false, then for each dtml-elif tag given, the variable or expression given in the dtml-elif tag is evaluated. If an dtml-elif
variable or expression value is true, the text following the dtml-elif tag is inserted and none of the following dtml-elif
variables or expressions are evaluated. If there are no dtml-elif tags or if all of the dtml-elif tag variable or expression
values are false, then the text following the dtml-else tag is inserted. If no dtml-else tag was supplied, then no text is
inserted.

The dtml-if and dtml-elif tags support only the standard name and expr attributes. The dtml-else tag accepts no attributes.

In addition to the dtml-if tag, the dtml-unless tag is provided with its associated closing tag, /dtml-unless, to insert text if a
condition is false. Like the dtml-if tag, the dtml-unless tag accepts the standard name and expr attributes:

<dtml-unless input_name>
 You did not provide a name.
</dtml-unless>

1. All Zope objects are either true or false. Numeric values are true if they are non-zero and false if they are zero. Objects that are
sequences of objects, like search results, are true if the sequences are non-empty and false otherwise. Most other objects are true.
Zope Document Template Markup Language Reference 27

Conditional Insertion, the dtml-if and dtml-unless Tags
28 Zope Document Template Markup Language Reference

Iterative Insertion, the dtml-in Tag
Iterative Insertion, the dtml-in Tag

Commonly, it is necessary to insert a sequence of values. Some objects, like Zope SQL Methods, and Confera Topics
support searching and a means is needed for iterating over search results.

When creating input forms with select lists, it is sometimes a good idea to store the contents of the list in a folder property
so that the list can be edited independently from the input form. In this case, the select list options are inserted into a form
by iterating over the list property.

The dtml-in tag is used to iterate over a sequence of objects. For example, an employee directory listing might be created
with DTML source like that shown in figure 2. In this example, employees is either a sequence of employees, or a
function, such as an Zope SQL Method, that computes a sequence of employees. Each employee has a name and phone
attribute. These attributes are accessed using dtml-var tags. An dtml-in tag’s sort attribute is used to sort employees by
name in the output. The dtml-in tag attributes are listed in table 18.

In the example, an empty table would be displayed if there were no employees. To avoid displaying an empty table a
message can be provided indicating that there are no employee by using the in tag in combination with the dtml-if tag, as
shown in figure 3. In figure 3, the dtml-if tag is used with the employees variable. Sequences of objects are false if they
are empty and true if they are not. If there are no employees, the condition in the dtml-if tag is false and the text following
the dtml-else tag is inserted.

The dtml-else Tag as an Intermediate Tag in the dtml-in Tag
In the previous example (figure 2) an dtml-in tag is combined with an dtml-if tag to avoid showing an empty table for an
empty sequence of employees. An alternative approach is to use an intermediate dtml-else tag in the dtml-in tag. If an
dtml-in tag has an intermediate dtml-else tag, then the text following the dtml-else tag is inserted if the sequence used in
the dtml-in tag is empty. Figure 4 shows DTML source which uses an dtml-else tag in the dtml-in tag to avoid showing an
empty table. The output from this source is the same as the output from the source shown in figure 3. The source in figure
4 is actually more complex that the source in figure 3. The added complexity is due to the fact that the table header and
footer have to be moved inside the dtml-in tag. Furthermore, the insertion of the table header and footer has to be
conditioned on whether or not an item is the first item, last item, or neither by using the variables sequence-start and
sequence-end (table 19).

<table>
 <tr><th>Name</th><th>Phone number</th></tr>
 <dtml-in employees sort=name>
 <tr>
 <td><dtml-var name></td>
 <td><dtml-var phone></td>
 </tr>
 </dtml-in>
</table>

Figure 2. DTML source to create an employee phone listing
Zope Document Template Markup Language Reference 29

The dtml-else Tag as an Intermediate Tag in the dtml-in Tag
When a name attribute is used in an dtml-in tag within an if tag, the sequence is only evaluated once, since the dtml-if tag
caches the value associated with a name attribute.

Name
Needs an
argument Description

name yes Insert the name of the variable. See "The name attribute".

expr yes Insert an expression that evaluates the value. See The expr attribute".

mapping no Normally, the attributes of items in the sequence are displayed. But, some items should be
treated as mapping objects, meaning that the items are to be looked up.

sort yes The sort attribute is used to cause a sequence of objects to be sorted before text insertion
is performed. The attribute value is the name of the attribute (or key if the mapping
attribute was provided) that items should be sorted on.

start yes The name of a (request) variable that specifies the number of the row on which to start a
batch.

size yes The batch size.

skip_unauthorized no Use of this attribute causes items to be skipped if access to the item is unauthorized. See
"Access Control". If this attribute is not used, then Unauthorized errors are raised if
unauthorized items are encountered.

orphan yes The desired minimum batch size.

overlap yes The number of rows to overlap between batches.

previous no If the previous attribute is included, then iterative insertion will not be performed. The
text following the in tag will be inserted and batch processing variables associated with
information about a previous batch will be made available.

reverse no Used with the sort attribute, objects can be sorted in reverse order.

next no The next attribute has the same meaning and use as the previous attribute except that

variables associated with the next batch are provided.

TABLE 18. dtml-in tag attributes

<dtml-if employees>
 <table>
 <tr><th>Name</th><th>Phone number</th></tr>
 <dtml-in employees sort=name reverse>
 <tr>
 <td><dtml-var name></td>
 <td><dtml-var phone></td>
 </tr>
 </dtml-in>
 </table>
<dtml-else>
 Sorry, there are no employees.
</dtml-if>

Figure 3. DTML source to create an employee phone listing which properly handles the case of no employees by using an
in tag with an dtml-if tag.
30 Zope Document Template Markup Language Reference

Variables Defined by the dtml-in Tag
In most cases, it is best to use an dtml-in tag inside an dtml-if tag, as illustrated in figure 3. One case in which it may be
best to use an dtml-else tag within an dtml-in tag is when the sequence used by the dtml-in tag is computed using an expr
attribute and the computation is expensive. Use of the dtml-else tag in the dtml-in tag avoids having to define and evaluate
the expression twice.

Variables Defined by the dtml-in Tag
When text is inserted using an dtml-in tag, a copy of the text is inserted for each item in the sequence. Tags in the inserted
text have access to variables not available outside the dtml-in tag. These include:

• Attributes of the current item,

• Item variables defined by the dtml-in tag (table 19),

• Summary statistic variables defined by the dtml-in tag (table 19),

• Grouping variables defined by the dtml-in tag (table 21), and

• Batch-processing variables defined by the dtml-in tag (table 22).

In addition, for each of the variables listed in tables 19, 22, and 23 with names ending in "-index", there exist variables
whose names end in "-number", "-roman", "-Roman", "-letter", and "-Letter" which are indexed from 1, "i","I", "a", and
"A", respectively. The sequence-index variable is used to number items as text is inserted. Variables like sequence-letter
and sequence-roman provide numbering using letters and Roman numerals.

There also exist variables ending in "-even" and "-odd", which test whether the sequence index is even or odd. This is
useful to display rows more visibly by alternating colors.

<dtml-in employees sort=name>
 <dtml-if sequence-start>
 <table>
 <tr><th>Name</th><th>Phone number</th></tr>
 </dtml-if>
 <tr>
 <td><dtml-var name></td>
 <td><dtml-var phone></td>
 </tr>
 <dtml-if sequence-end>
 </table>
 </dtml-if>
<dtml-else>
 Sorry, there are no employees.
</dtml-in>

Figure 4. DTML source to create an employee phone listing which properly handles the case of no employees by using an
dtml-else tag in an dtml-in tag.
Zope Document Template Markup Language Reference 31

Variables Defined by the dtml-in Tag
Finally, for each of the variables ending in "-index", there are variables whose names end in "-var-xxx", where "xxx" is an
element attribute name or key. This is useful when displaying previous- and next-batch information. The construct is also
useful if used in an dtml-if tag to test whether or not an attribute is present since the attribute lookup will not be extended
to the full document template name space.

Name Description

sequence-item The current item.

sequence-key The key associated with the element in an items sequence. An items sequence is a sequence of value pairs that
represent a mapping from a key to a value.

sequence-index The index, starting from 0, of the element within the sequence.

sequence-start The variable is true if the element being displayed is the first of the displayed elements, and false otherwise.
This is useful when text must be inserted at the beginning of an dtml-in tag, especially if the text refers to any
variables defined by the dtml-in tag.

sequence-end The variable is true if the element being displayed is the last of the displayed elements, and false otherwise.
This is useful when text must be inserted at the end of an dtml-in tag, especially if the text refers to any
variables defined by the dtml-in tag.

TABLE 19. Item variables defined by the dtml-in tag
32 Zope Document Template Markup Language Reference

Summary Statistics
Summary Statistics

The dtml-in tag provides variables (table 20) for accessings. Summary statistics are computed over the entire sequence,
not just over the items displayed.

Grouping Variables
The dtml-in tag defines special variables used for testing when a "grouping" variable changes. These variables begin with
the prefix "first-" or "last-". Their value is used to test whether an item is the first or last item in a subsequence of
displayed items whose value is the same value for the given item variable.

Batch Processing
When displaying a large number of objects, it may be impractical to display all of the data at once. While the approach
used in figure 3 is practical for a small group of employees, it is impractical for browsing the employees of a large
company.

Name Description

total-nnni

i. nnn is the name of an attribute or key. For example, to get the mean salary in a collection of employees, each with the
attribute salary, mean-salary would be used.

The total of numeric values.

count-nnn The total number of non-missing values.

min-nnn The minimum of non-missing values.

max-nnn The maximum of non-missing values.

median-nnn The median of non-missing values.

mean-nnn The mean of numeric values.

variance-nnn The variance of numeric values computed with a degrees of freedom equal to the (count - 1).

variance-n-nnn The variance of numeric values computed with a degrees of freedom equal to the count.

standard-deviation-nnn The standard deviation of numeric values computed with a degrees of freedom equal

to the (count - 1).

standard-deviation-n-nnn The standard deviation of numeric values computed with a degrees of freedom equal to the count.

TABLE 20. Summary statistic variables defined by the dtml-in tag

Name Description

first-nnn True if the current item is the first item among the displayed items that has the current value for
variable, nnn; False otherwise.

last-nnn True if the current item is the last item among the displayed items that has the current value for
variable, nnn; False otherwise

TABLE 21. Special variables for group processing
Zope Document Template Markup Language Reference 33

Batch Processing
For this reason, the dtml-in tag provides support for batch processing. Information is displayed in batches. Variables are
provided (table 22) to aid in the construction of HTML hyperlinks to other batches.

The batch-processing facilities of the dtml-in tag are quite powerful, but the various options and approaches are complex.
For lucidity, take for example a simple table of 36 words (figure 5). The DTML source in figure 6 is used to display this
data. The DTML uses an if tag to test for an empty sequence of words. The actual sequence is named w36. Inside the if
tag, there are three dtml-in tags. All three dtml-in tags include the attributes, size with the value 5 and start with the value
qs. The size attribute is used to specify a batch size. For example purposes, the batch size is unusually small. The start
parameter is used to specify the name of a variable which holds the index of the first element of the sequence to be
displayed. If the variable is not defined, then the first batch is displayed. Figure 7 shows the output of the DTML as
displayed on a Web browser for the first two and last two batches.

Name Description

sequence-query The original query string given in a get request with the form variable named in the start
attribute removed.

sequence-step-size The batch size used.

previous-sequence The variable is true when the first element is displayed, and when the first element displayed
is not the first element in the sequence.

previous-sequence-start-index The index, starting from 0, of the start of the batch previous to the current batch.

previous-sequence-end-index The index, starting from 0, of the end of the batch previous to the current batch.

previous-sequence-size The size of the batch previous to the current batch.

previous-batches A sequence of mapping objects containing information about all of the batches prior to the
batch being displayed.

next-sequence The variable is true when the last element is displayed, and when the last element displayed is
not the last element in the sequence.

next-sequence-start-index The index, starting from 0, of the start of the batch after the current batch.

next-sequence-end-index The index, starting from 0, of the end of the batch after the current batch.

next-sequence-size The size of the batch after the current batch.

next-batches A sequence of mapping objects containing information about all of the batches after the batch
being displayed.

TABLE 22. Batch-processing variables

Name Description

batch-start-index The index, starting from 0, of the beginning of the batch.

batch-end-index The index, starting from 0, of the end of the batch.

batch-size The size of the batch.

TABLE 23. Attributes of batch objects used when iterating over next-batches and previous-batches variables.
34 Zope Document Template Markup Language Reference

Orphan rows
The first of the three dtml-in tags is used to display an HTML hyperlink to a previous batch of data. The previous attribute
in the dtml-in tag indicates that only previous-batch data should be displayed. Row data are not displayed. If the first batch
is being displayed, then no text is inserted (figure 7 (words 1-5)). The source in the first dtml-in tag uses four variable
references. The first retrieves the document_id, which is used as a relative URL name for the document. The second
variable reference uses sequence-query to retrieve the request query string which has been modified so that it does not
include the variable named in the dtml-in tag start attribute, qs. The sequence-query value also contains the necessary
punctuation, ‘?’ and ‘&’, so that the document_id, sequence-query and URL-encoded value for the next batch start can be
concatenated. The URL-encoded value of the next batch start is “qs=” followed by the variable, previous-sequence-start-
number. The variable previous-sequence-size provides the size of the previous batch for display in the hyperlink. Note that
the previous (or next) sequence size is not necessarily equal to the batch size.

The DTML source has been split over multiple lines by introducing line breaks within var tags. This is a useful way to
break up long lines without causing line-breaks to be included in generated HTML.

The second dtml-in tag simply displays the rows in the batch. The third dtml-in tag is similar to the first dtml-in tag, except
that a hyperlink to the next batch, rather than the previous batch, is displayed. Table 24 shows the query string, previous
batch URL and next-batch URL for the example shown in figure 7.

Orphan rows
Note that in the previous example the size of the last batch is six. This is because the dtml-in tag has a feature which
attempts to prevent the display of very small batches by combining them with adjacent batches. Normally, if the number
of rows in a batch is less than or equal to two, then it is combined with an adjacent batch. The orphan attribute in the dtml-
in tag can be used to provide an alternative setting. The value provided in an orphan attribute is the desired minimum
batch size. The default setting for an orphan attribute is 3 (three).

25 output

26 peak

27 ration

28 reprogram

29 school

30 sear

31 sex

32 shake

33 slam

34 spawn

35 trivial

36 vital

Number word

TABLE 24.

13 eye

14 fool

15 graft

16 index

17 jet

18 lull

19 market

20 marshal

21 mask

22 meet

23 neck

24 offer

Number word

TABLE 24.

Number word

1 accident

2 assault

3 assert

4 bask

5 berlin

6 berlin

7 buttress

8 center

9 clamor

10 distort

11 envelop

12 extend

TABLE 24.

Figure 5. Table of 36 words
Zope Do
cument Template Markup Langua
ge Reference
 35

Orphan rows
<dtml-var standard_html_header>

<dtml-if w36>

 <dtml-in w36 previous size=5 start=qs>
 <a href="<dtml-var document_id><dtml-var sequence-query
 >qs=<dtml-var previous-sequence-start-number>">
 (Previous <dtml-var previous-sequence-size> results)
 </dtml-in>

 <table border>
 <tr><th>WORD</th></tr>
 <dtml-in w36 size=5 start=qs>
 <tr><td><dtml-var WORD></td></tr>
 </dtml-in>
 </table>

 <dtml-in w36 next size=5 start=qs>
 <a href="<dtml-var document_id><dtml-var sequence-query
 >qs=<dtml-var next-sequence-start-number>">
 (Next <dtml-var next-sequence-size> results)
 </dtml-in>

<dtml-else>
 Sorry, no words.
</dtml-if>

<dtml-var standard_html_footer>

Figure 6. DTML source to browse 36 words, 5 words at a time

(words 1-5) (words 6-10) (words 26-30) (words 31-36)

Figure 7. The output of the DTML source in figure 6 as displayed in a Web browser for several batches.
36 Zope Document Template Markup Language Reference

Overlapping batches
Overlapping batches
Normally, batches are non-overlapping. For large batch sizes, it is sometimes useful to overlap rows between batches. The
overlap attribute in the in tag is used to specify how many rows to overlap between batches. The overlap attribute’s
default value is 0.

Showing row number and row data in previous and next batch hyperlinks.
The variables beginning previous-sequence-start-, previous-sequence-end-, next-sequence-start- and next-sequence-end-
and ending in index, number, roman, Roman, letter, Letter, and var-xxx, where xxx is a row attribute (or key) name, can be
used to label which rows begin and end previous and next batches. This is illustrated in figures 8 and 9, which use various
batch insertion variables to label previous and next batches.

Words Query string Previous-batch URL Next- batch URL

1-5 r36?qs=6

6-10 qs=6 r36?qs=1 r36?qs=11

26-30 qs=26 r36?qs=21 r36?qs=31

31-36 qs=31 r36?qs=26

TABLE 24. Query strings and previous batch URLi and next batch URL for the batches shown in figure 7

i. These are relative URL’s as generated by the DTML. The document_id for this
example is r36.

<dtml-in w36 previous size=5 start=qs>
 (<dtml-var previous-sequence-start-roman> -
 <dtml-var previous-sequence-end-roman>)
</dtml-in>

<table border><tr><th>WORD</th></tr>
 <dtml-in w36 size=5 start=qs>
 <tr><td><dtml-var WORD></td></tr>
 </dtml-in>
</table>

<dtml-in w36 next size=5 start=qs>
 (<dtml-var next-sequence-start-number> -
 <dtml-var next-sequence-end-number>)
</dtml-in>

Figure 8. Using batch-processing variables to number previous and next batch rows using Roman and Arabic numerals.
Zope Document Template Markup Language Reference 37

Showing row number and row data in previous and next batch hyperlinks.
<dtml-in w36 previous size=5 start=qs>
 (<dtml-var previous-sequence-start-letter> -
 <dtml-var previous-sequence-end-letter>)
</dtml-in>

<table border><tr><th>WORD</th></tr>
 <dtml-in w36 size=5 start=qs>
 <tr><td><dtml-var WORD></td></tr>
 </dtml-in>
</table>

<dtml-in w36 next size=5 start=qs>
 (<dtml-var next-sequence-start-var-WORD> -
 <dtml-var next-sequence-end-var-WORD>)
</dtml-in>

Figure 9. Using batch-processing variables to number previous-batch rows using letters and next-batch starting and
ending words.
38 Zope Document Template Markup Language Reference

Showing information about multiple batches
Showing information about multiple batches
Hyperlinks to multiple batches can be provided using the next-batches and previous-batches variables. These variables
provide access to sequences of mapping objects containing information about all previous and next batches. Figure 10
implements the use of previous-batches to show hyperlinks to previous batches using starting and ending row numbers
and next-batches to show hyperlinks to next batches using starting and ending words. Note that nested dtml-in tags are
used to iterate over batch information. The nested dtml-in tags must use the mapping attribute because the items in the
sequences, associated with next-batches and previous-batches, are mapping objects.

<dtml-in w36 previous size=5 start=qs>
 <dtml-in previous-batches mapping>
 <dtml-unless sequence-start>, </dtml-unless>
 <a href="<dtml-var document_id><dtml-var sequence-query
 >qs=<dtml-var batch-start-number>">
 <dtml-var batch-start-number> -
 <dtml-var batch-end-number>
 </dtml-in>
</dtml-in>

<table border><tr><th>WORD</th></tr>
 <dtml-in w36 size=5 start=qs>
 <tr><td><dtml-var WORD></td></tr>
 </dtml-in>
</table>

<dtml-in w36 next size=5 start=qs>
 <dtml-in next-batches mapping>
 </dtml-unless sequence-start>, <dtml-unless>
 <a href="<dtml-var document_id><dtml-var sequence-query
 >qs=<dtml-var batch-start-number>">
 <dtml-var batch-start-var-WORD> -
 <dtml-var batch-end-var-WORD>
 </dtml-in>
</dtml-in>

Figure 10. Use of DTML to provide links to all previous and next batches.
Zope Document Template Markup Language Reference 39

Showing information about multiple batches
40 Zope Document Template Markup Language Reference

Displaying Objects with the dtml-with Tag
Displaying Objects with the dtml-with Tag

The dtml-with tag can be used to expand the namespace of a document template by adding attributes (or mapping keys)
from an object which already exists in the document template namespace. For example, if a document template is used to
display a folder, the contents of a sub-folder can be displayed using a dtml-with tag:

<dtml-with subfolder>
 <dtml-var title>
</dtml-with>

In combination dtml-with the namespace method of the special variable, _, the dtml-with tag can be used to add new
variables to the DTML name space:

<dtml-with "_.namespace(profit=price-cost, title=product_name+’ summary’)">
 <h3><dtml-var title></h3>
 The profit is <dtml-var profit>
</dtml-with>

A common use of the dtml-with tag is to cause request variables to be used before object attributes:

The current id is <dtml-var id>
<dtml-with REQUEST>
 The id you entered was <dtml-var id>
</dtml-with>

Normally, document templates are used as methods of objects. Object attributes commonly take precedence over request
variables. Using the REQUEST variable in a dtml-with tag causes the request to be searched before other parts of the name
space.

Using the only Attribute to Limit the Namespace
The only attribute, unique to the dtml-with tag, prunes the enclosing namespaces when rendering the body of the tag. This
is advantageous to prevent acquisition within DTML:

<dtml-with REQUEST only>
 <dtml-unless id>
 An id was not specified.
 <dtml-/unless>
<dtml-/with>

Without the only attribute, the above DTML would likely get an id value from the enclosing environment, which, in this
example, is unwanted.
Zope Document Template Markup Language Reference 41

Multiple assignments with the dtml-let Tag
Multiple assignments with the dtml-let Tag

The dtml-let tag works like the dtml-with tag. It is more flexible in that it allows you to make multiple assignments; and
allows you to chain assignments, using earlier declarations in later assignments.

The dtml-let tag is a new tag that lets you create blocks like:

 <dtml-in "1,2,3,4">
 <dtml-let num=sequence-item

 index=sequence-index
 result="num*index">

 <dtml-var num> * <dtml-var index> = <dtml-var result>
 </dtml-let>
 </dtml-in>

 Which yields:

 1 * 0 = 0
 2 * 1 = 2
 3 * 2 = 6
 4 * 3 = 12

Notice in the above example, the ’result’ variable is based on ’num’,and ’index’, both of which are
assigned in the same dtml-let expression.

The syntax of the dtml-let tag requires that each argument to be evaluated in the head of the dtml-let tag must be separated
by a newline. Enclosing an argument in double quotes causes it to be evaluated by the DTML expression machinery
("num*index"). Unquoted arguments are referenced by name.

 Evaluation of the dtml-let tag is in sequence. The results of earlier assignments are available in later assignments. Later
assignments can also override earlier ones, which can be helpful for longer step-by-step calculations. The variables set
are in effect for the life of the dtml-let block.
42 Zope Document Template Markup Language Reference

Evaluating Names or Expressions without Generating Text Using the dtml-call Tag
Evaluating Names or Expressions without
Generating Text Using the dtml-call Tag

Sometimes, document templates are used to perform actions in addition to or even instead of displaying results. Methods
can be called when evaluating name attributes or in expr attribute expressions. These methods may perform a useful
action but produce no output or produce an output which is not needed. The dtml-call tag is provided for evaluating
expressions or calling methods that have a useful side effect without inserting any text:

<dtml-call "addDocument(’hi’,’display a greeting’,’Hello world!’)">
Zope Document Template Markup Language Reference 43

Evaluating Names or Expressions without Generating Text Using the dtml-call Tag
44 Zope Document Template Markup Language Reference

Reporting Errors with the dtml-raise Tag
Reporting Errors with the dtml-raise Tag

In many applications, inputs or other variables need to be checked for validity before actions are performed. DTML
provides a convenient means of performing validity checks by using the dtml-raise tag in combination with the if tag.
Validity checks are performed with the if tag. The dtml-raise tag is used to report the errors.

The dtml-raise tag has a type attribute for specifying an error type. Like the standard name attribute, the attribute name of
the type attribute may be omitted. The error type is a short descriptive name for the error. In addition, there are some
standard types, like "Unauthorized" and "Redirect" that are returned as HTTP errors. In particular, "Unauthorized" errors
cause a log-in prompt to be displayed on the user’s browser.

The dtml-raise tag is a non-empty tag. The source enclosed by the dtml-raise tag is rendered to create an error message. If
the rendered text contains any HTML markup, then Zope will display the text as an error message on the browser,
otherwise a generic error message is displayed.

Here is a dtml-raise tag example:

<dtml-if "balance >= debit_amount">
 <dtml-call "debitAccount(account)">
 Your account, <dtml-var account>, has been debited.
<dtml-else>
 <dtml-raise type="Insufficient funds">
 There is not enough money in account <dtml-account>
 to cover the requested debit amount.<p>
 </dtml-raise>
</dtml-if>

The dtml-raise tag causes a Zope error to occur. However, there is an important side effect to this error that causes any
changes made by a web request to be ignored, assuming that a transactional persistence mechanism, like the Zope
Database is being used.
Zope Document Template Markup Language Reference 45

Exception Handling with the dtml-try Tag
Exception Handling with the dtml-try Tag

Exceptions are unexpected errors Zope encounters during the rendering of a DTML statement. Once an exception is
detected, the normal execution of the DTML stops. Consider the following example:

Cost per unit: $<dtml-var expr="_.float(total_cost/total_units)">

This statement functions normally if total_units is not zero. However, in the event that total_units is zero, a
ZeroDivisionError exception is raised indicating an illegal operation. Thus, rather than rendering the DTML, an error
message will be returned.

DTML provides the dtml-try tag to catch and handle these problematic exceptions within a block of DTML code. This
allows you to anticipate and handle errors yourself, rather than getting a Zope error message whenever an exception
occurs.

As an exception handler, the dtml-try tag has two functions. First, if an exception is raised, the dtml-try tag gains control
of execution and handles the exception appropriately, and thus avoids returning a Zope error message. Second, the dtml-
try tag allows the rendering of any subsequent DMTL to continue.

Within the dtml-try tag are one or more dtml-except tags that identify and handle different exceptions. When an exception
is raised, each dtml-except tag is checked in turn to see if it matches the exception’s type. The first dtml-except tag to
match handles the exception. If no exceptions are given in a dtml-except tag, then the dtml-except tag will match all
exceptions.

Implementing the dtml-try tag in the example above would resemble:

<dtml-try>

 Cost per unit: $<dtml-var expr="_.float(total_cost/total_units")>

 <dtml-except ZeroDivisionError>

 Cost per unit: N/A

</dtml-try>

If a ZeroDivisionError is raised, control goes to the dtml-except tag, and “Cost per unit: N/A” is rendered. Once the
statements of the dtml-except tag finish, execution of DTML continues past the dtml-try block.

DTML’s except tags work with Python’s class-based exceptions. In addition to matching exceptions by name, the dtml-
except tag will match any subclass of the named exception. For example, if ArithmaticError is named in a dtml-except tag,
the tag can handle all ArithmaticError subclasses including, ZeroDivisionError.

Inside the body of a dtml-except tag you can access information about the handled exception through several special
variables. These variables are:

1. error_type, which represents the type of the handled exception,

2. error_value, which represents the value of the handled exception, and

3. error_tb, which represents the traceback of the handled exception.
46 Zope Document Template Markup Language Reference

The dtml-try tag optional dtml-else block
The dtml-try tag optional dtml-else block

The dtml-try tag has an optional dtml-else block that is rendered if an exception didn’t occur. The exceptions in the else
block are not handled by the preceding dtml-except blocks. Implementing the dtml-else tag with the dtml-try tag would
be like:

<dtml-try>

 <dtml-except SomeError AnotherError>

 <dtml-except YetAnotherError>

 <dtml-except>

 <dtml-else>

</dtml-try>

The first dtml-except block to match the type of error raised is rendered. If a dtml-except block has no name, then it
matches all raised errors. The optional dtml-else block is rendered when no exception occurs in the dtml-try block.
Exception in the dtml-else block are not handled by the preceding dtml-except blocks.

The dtml-try tag optional dtml-finally block

In addition to the dtml-else block, the dtml-try tag has the ability to use a dtml-finally block that is always rendered
whether an exception occurs or not. The dtml-finally form specifies a cleanup block to be rendered even when a
exception occurs. Note, any rendered results are discarded if an exception occurs in either the try or finally blocks. The
dtml-finally block is only of any used if you need to clean up something that will not be cleaned up by the transaction
abort code. The dtml-finally block will always be called, whether there is an exception or nor and whether a return tage is
used or not. If you use a dtml-return tag in the try block, any output of the dtml-finally block is discarded.

<dtml-try>

 <dtml-finally>

</dtml-try>

Important to note, if a exception occurs in the dtml-try block and an exception occurs in the dtml-finally block any
information about the first exception is lost. It follows that if a return tag is used in the dtml-try block and an exception
occurs in the dtml-finally block, the result returned in the dtml-try block will be lost. Also, if a return tag is used in the
dtml-finally block, the result returned in the dtml-try block will be lost as well.
Zope Document Template Markup Language Reference 47

Excluding Source Text with the dtml-comment Tag
Excluding Source Text with the dtml-comment
Tag

The dtml-comment tag provides a way to exclude source text from the rendered text. The dtml-comment tag is a simple
non-empty tag that inserts no text. Further, the source enclosed by a dtml-comment tag is not rendered. Dtml-comment
tags can be used to provide explanatory text or to disable parts of the source. Comment tags can be nested. Here is an
example:

<dtml-call updateData>
 The data have been updated.
<dtml-comment>
 This comment is used to disable logging.

 <dtml-comment>
 The following call records that updates were made
 </dtml-comment>

 <dtml-call logUpdates>
</dtml-comment>
48 Zope Document Template Markup Language Reference

Returning Data using the dtml-return tag
Returning Data using the dtml-return tag

The dtml-return tag is used to return data rather than text from a DTML method. It provides a way to use DTML methods
to perform simple computation that can be used by other DTML methods and Zope objects. The only attributes
supported by the dtml-return tag are the standard name and expr attributes.

 Consider the following example:

 blah blah
 <dtml-return "1">

 When this DTL method is executed, the number 1 is returned. The text "blah blah" is not returned. In:

 <dtml-in objectIds>
 <dtml-return sequence-item>
 </dtml-in>
 blah

 If there are any object ids, then the first one is returned, otherwise, the DTML text, "blah" is returned.
Zope Document Template Markup Language Reference 49

Displaying Information Hierarchically: the dtml-tree tag
Displaying Information Hierarchically: the dtml-
tree tag

Zope objects are organized and presented in a hierarchical fashion, so it is only natural that there should be a DTML
facility to aid in the hierarchical display of information. This facility is the dtml-tree tag. The dtml-tree tag is similar to the
dtml-in tag, in that it is applied to objects that contain other objects. However, in addition to iterating over sub-objects, the
dtml-tree tag provides the ability to expand and iterate over sub-objects of sub-objects.

The dtml-tree tag provides many options which allow you quite a bit of control over how the tree is displayed.

Figure 11 shows two tree views of a Zope site with and without a folder expanded. This view is generated with the DTML
shown in figure 12.

This example shows an extremely simple form of the dtml-tree tag. No attributes are used. Although the dtml-tree tag can
use the standard name and expr attributes to specify data to be displayed, these attributes may be and usually are omitted.
The dtml-tree tag usually uses the current folder as the source of data to be displayed. The text following the dtml-tree tag
is inserted for each “branch” of a tree. The attributes that can be used with the dtml-tree tag are summarized in table 21.

By default, the dtml-tree tag displays branches and sub-branches of an object. Branches are normally found by calling a
method named tpValues of the object being displayed by the dtml-tree tag. Many Zope objects, including folders, provide
tpValues methods. Alternatively, the branches method may be used to specify a different method to call to find branches.
For example, to display all sub-objects of a folder, the objectValues method may be used (figure 13).

(a) (b)

Figure 11. A tree view of a folders in a Zope “school” site with
(a) no top-level folders expanded and (b) the Grades folder expanded

<dtml-var standard_html_header>

<dtml-tree>
 <dtml-var id>
</dtml-tree>

<dtml-var standard_html_footer>

Figure 12. DTML source to produce the tree views shown in figure 11.
50 Zope Document Template Markup Language Reference

Displaying Information Hierarchically: the dtml-tree tag
An object that does not have sub-branches may instead define “leaves” by using the leaves attribute of the dtml-tree tag.
The argument to the leaves attribute is a Document object. This is commonly used when browsing database data.
Branches are used to provide a hierarchical organization to data and leaves are used to display data within a hierarchical
grouping.

The header and footer attributes are similar to the leaves attribute, in that they are used to specify documents to be
displayed when a branch is expanded. Unlike the leaves attribute, they are only used when there are sub-branches of an
object. The header document is displayed before the display of sub-branches, and the footer is displayed following sub-
branches.

Name
Value

required? Description

name yes Insert the name of the variable to be inserted.

expr yes Insert an expression that evaluates to the value to be inserted.

branches yes The name of the method used to find sub-objects. This defaults to tpValues, which is a
method defined by a number of objects in Zope and in Zope products.

branches_expr yes An expression which is evaluated to find sub-objects. This attribute performs the same
function as the branches attribute but uses an expression rather than the name of a
method.

id yes The name of a method or attribute used to determine the id of an object for the
purposes of calculating tree state. This defaults to tpId which is a method defined by
many Zope objects. This attribute is mostly useful for developers who wish to have
fine control of the internal representation of the tree state.

url yes The name of a method or attribute used to determine the url of an object. This defaults
to tpURL which is a method defined by many Zope objects. This attribute is mostly
useful for developers who wish to have fine control over tree url generation.

leaves yes The name of a Document used to expand sub-objects that do not have sub-object
branches.

header yes The name of a Document to be shown at the top of each expansion. This provides an
opportunity to “brand” a branch in a hierarchy. If the named document cannot be found
for a branch, then the header attribute is ignored for that branch.

footer yes The name of a Document to be shown at the bottom of each expansion. If the named
document cannot be found for a branch, then the footer attribute is ignored for that
branch.

nowrap yes Either 0 or 1. If 0, then branch text will wrap to fit in available space, otherwise, text
may be truncated. The default value is 0.

sort yes Sort branches before text insertion is performed. The attribute value is the name of the
attribute that items should be sorted on.

assume_children yes Either 0 or 1. If 1, then all items are assume to have sub-items, and will therefore
always have a plus sign in front of them when they are collapsed. Only when an item is
expanded will sub-objects be looked for. This could be a good option when the
retrieval of sub-objects is a costly process.

single yes Either 0 or 1. If 1, then only one branch of the tree can be expanded. Any expanded
branches will collapse when a new branch is expanded.

skip_unauthorized yes Either 0 or 1. If 1, then no errors will be raised trying to display sub-objects to which
the user does not have sufficient access.

TABLE 25. dtml-tree tag attributes.
Zope Document Template Markup Language Reference 51

Displaying Information Hierarchically: the dtml-tree tag
The dtml-tree tag sets a number of variables in the DTML namespace as it renders sub-objects. These variables allow sub-
objects to tailor their representation to their position within the tree. Perhaps the most useful variable set by the dtml-tree
tag is the tree-item-expanded variable. If this variable is true then the tree item knows that it has been expanded. The
variables set by the tree tag are summarized in Table 26.

Additionally, the dtml-tree tag responds to several variables set the DTML namespace. You can expand and collapse the
entire tree by setting the expand_all and collapse_all variables. Table 27 details the variables which control tree state.

One common application of these variables is to provide links which allow a tree to be expanded and collapsed. Here’s an
example of how this could be done in DTML:

<P>
<a href="<dtml-var URL0>?expand_all=1">Expand tree |
<a href="<dtml-var URL0>?collapse_all=1">Collapse tree
</P>

This snippet of DTML provides two links to the current page. One link will cause the current page’s tree to expand, the
other will cause it to collapse.

<dtml-var standard_html_header>

<dtml-tree branches=objectValues>
 <IMG SRC="<dtml-var SCRIPT_NAME
 >/<dtml-var icon>">
 <dtml-var id>
</dtml-tree>

<dtml-var standard_html_footer>

Figure 13. Use of the branches tag to display all sub-objects in a folder.

Name Description

tree-item-expanded True is the current item is expanded.

tree-item-url The URL of the current item relative to the URL of the DTML document in which the tree tag
appears. This variable relies on the tree tag’s url attribute to generate the tree-item URL

tree-root-url The URL of the DTML document in which the tree tag appears.

tree-level The depth of the current item. Items at the top of the tree have a level of 0.

tree-colspan The number of levels deep the tree is being rendered. This variable along with the tree-level
variable can be used to calculate table rows and colspan settings when inserting table rows into
the tree table.

tree-state The tree state expressed as a list of ids and sub-lists of ids. This variable is mostly of interest to
developers who which to have precise knowledge of a tree’s state.

TABLE 26. Variables set by the dtml-tree tag when rendering sub-objects.
52 Zope Document Template Markup Language Reference

Displaying Information Hierarchically: the dtml-tree tag
Name Description

expand_all If set to a true value, this variable causes the entire tree to be expanded.

collapse_all If set to a true value, this variable causes the entire tree to be collapsed.

tree-s This variable contains the tree state in a compressed and encoded form. This variable is set in a
cookie to allow the tree to maintain its state. Developers may control the state of the tree directly
by setting this variable, though this is not recommended.

tree-e This variable contains a compressed and encoded list of ids to expand. Developers may control
the state of the tree directly by setting this variable, though this is not recommended.

tree-c This variable contains a compressed and encoded list of ids to collapse. Developers may control
the state of the tree directly by setting this variable, though this is not recommended.

TABLE 27. Variable that influence the dtml-tree tag
Zope Document Template Markup Language Reference 53

Sending Mail: the dtml-sendmail tag
Sending Mail: the dtml-sendmail tag

The dtml-sendmail tag is used to send an electronic message using the Simple Mail Transport Protocol (SMTP). Unlike
other DTML tags, the dtml-sendmail tag does not cause any text to be included in output. Figure 14 shows a DTML
document, named SendFeedback, which uses the dtml-sendmail tag to send information collected in a feedback form
(figure 15). The dtml-sendmail tag requires numerous pieces of information that are specified by dtml-sendmail tag
attributes, shown in Table 28. At minimum, either a Zope MailHost object must be specified, or a SMTP host address
must be specified using a smtphost attribute. The recipients, sender, and subject information are required, but they may be

provided either as dtml-sendmail tag attributes, or using “header” lines1 at the beginning of the message (figure 14).

<dtml-var standard_html_header>

<dtml-sendmail smtphost="gator.digicool.com">
To: Product Support <<dtml-var support>>
From: Web Feedback Form <<dtml-var feedback>>
Subject: <dtml-var subject>

<dtml-var body>
</dtml-sendmail>

Thank you for your input!

<dtml-var standard_html_footer>

Figure 14. A sample document that uses the dtml-sendmail tag

<dtml-var standard_html_header>

<H2>We want your input!</H2>

<form action=SendFeedback>
 Subject: <input type=text name=subject size=40>

 <textarea name=body rows=10 cols=50>
 </textarea>

 <input type=submit value="Send Feedback">
</form>

<dtml-var standard_html_footer>

Figure 15. A feedback form that collects a subject and body from a user and submits them to the SendFeedback document
shown in figure 14.

1. A header line is a line that begins with a header name, followed by a colon, a space, and a value. Header lines may have
continuation lines that begin with one or more spaces or tabs. All of the header lines, with continuation lines, if any, must start at the
beginning of the text following the dtml-sendmail tag and must be separated from the message body by at least one blank line.
54 Zope Document Template Markup Language Reference

Sending Mail: the dtml-sendmail tag
The text following the dtml-sendmail tag can and usually does use DTML tags to include data from input forms and Zope
objects. In the SendFeedback example in figure 14, the variables support and feedback are supplied from Folder
properties and the variables subject and body are supplied from the FeedbackForm Document shown in figure 15.

Name Description

mailhost A Zope MailHost object that manages Simple Mail Transport Protocol (SMTP) and port information. This attribute is
not used if the smtphost attribute is used.

smtphost The address of a SMTP server. Mail will be delivered to this server, which will do most of the work of sending mail.
This attribute is not used if the mailhost attribute is used.

port If the smtphost attribute is used, then the port attribute is used to specify a port number to connect to. If not specified,
then port 25 will be used.

mailto A recipient address or a list of recipient addresses separated by commas.

mailfrom A sender address.

subject The subject of the message.

TABLE 28. dtml-sendmail tag attributes
Zope Document Template Markup Language Reference 55

Sending Attachments with the dtml-mime Tag
Sending Attachments with the dtml-mime Tag

The dtml-mime tag is used in conjunction with the dtml-sendmail tag to send attachments along with electronic mail

messages1. The dtml-mime tag automatically sets the content type of the entire message to multipart/mixed. Thus, a
variety of data can be attached to a single message using one or more dtml-boundary tags. Figure 16 uses the dtml-mime
tag to attach the file, yearly_report, to an email formed by the dtml-sendmail tag.

The dtml-mime tag and dtml-boundary tags contain several attributes, listed in Table 19, that specify MIME header
information for their particular content. Since the opening dtml-mime tag in Figure 16 contains the body of the message,
and does not require encoding, encode is set to 7bit.

Notice in Figure 16, there is no space between the opening dtml-mime tag and the TO: header. If a space is present, then
the message will not be interpreted as by the receiving mailreader. Also notice, there are no spaces between the dtml-
boundary, var or closing dtml-mime tags. I

1. The dtml-mime tag can also be used in http multipart responses.

<dtml-var standard_hmtl_header>
<dtml-sendmail smtphost=gator.digicool.com>
From: zope@digicool.com
To: <dtml-var who>
<dtml-mime type=text/plain encode=7bit>

Here is the yearly report.

<dtml-boundary type=application/octet-stream
disposition=attachment encode=base64><dtml-var
"yearly_report">
</dtml-mime>

</dtml-sendmail>

Mail with attachment was sent.
<dtml-var standard_hmtl_footer>

Figure 16. The dtml-mime tag used to attach a file to an email message

Name Description

type Sets the MIME header, Content-Type, of the subsequent data.

disposition Sets the MIME header, Content-Disposition, of the subsequent data. If disposition is not specified
in a mime or boundary tag, then Content-Disposition MIME header is not included

encode Sets the MIME header, Content-Transfer-Encoding, of the subsequent data. If encode is not
specified, base64 is used as default. The options for encode are: base64, uuencode, x-uuencode,
quoted-printable, uue, x-uue, and 7bit. No encoding is done if set to 7bit.

TABLE 29. dtml-mime tag attributes
56 Zope Document Template Markup Language Reference

Appendix A, Date-time data
Appendix A, Date-time data

Zope provides a facility for working with DateTime data. From Python, a DateTime module provides a DateTime class
for creating and formatting DateTime data. From DTML, the special variable _ provides a method for constructing date-
time values from strings and numeric data. DateTime objects provide methods that can be used to format data in various
ways.

Name Description

AMPM Return the time string for an object to the nearest second.

AMPMMinutes Return the time string for an object not showing seconds.

aCommon Return a string representing the object’s value with the format: Mar 1, 1997 1:45 pm.

aCommonZ Return a string representing the object’s value with the format: Mar 1, 1997 1:45 pm US/Eastern.

aDay Return the abbreviated name of the day of the week.

aMonth Return the abbreviated month name.

ampm Return the appropriate time modifier (am or pm).

Date Return the date string for the object.

Day Return the full name of the day of the week.

DayOfWeek Compatibility: see Day.

day Return the integer day.

dayOfYear Return the day of the year, in context of the time-zone representation of the object.

dd Return day as a 2 digit string.

fCommon Return a string representing the object’s value with the format: March 1, 1997 1:45 pm.

fCommonZ Return a string representing the object’s value with the format: March 1, 1997 1:45 pm US/Eastern.

HTML4 The W3C recommended date & time format YYYY-MM-DDTHH:MM:SSZ. T,Z are literal characters.
Time is in UTC.

h_12 Return the 12-hour clock representation of the hour.

h_24 Return the 24-hour clock representation of the hour.

hour Return the 24-hour clock representation of the hour.

isCurrentHour Return true if this object represents a date/time that falls within the current hour, in the context of this
object’s time-zone representation.

isCurrentMonth Return true if this object represents a date/time that falls within the current month, in the context of this
object’s time-zone representation.

isFuture Return true if this object represents a date/time later than the time of the call.

isLeapYear Return true if the current year (in the context of the object’s time zone) is a leap year.

isPast Return true if this object represents a date/time earlier than the time of the call.

Mon_ Return the full month name.

Mon Compatibility: see aMonth.

Month Return the full month name.

TABLE 30. Custom formats for date-time data
Zope Document Template Markup Language Reference 57

Appendix A, Date-time data
minute Return the minute.

mm Return month as a 2 digit string.

month Return the month of the object as an integer.

notEqualTo(t) Compare this DateTime object to another DateTime object OR a floating point number, such as that which is
returned by the python time module. Returns true if the object represents a date/time not equal to the
specified DateTime or time module style time.

PreciseAMPM Return the time string for the object.

PreciseTime Return the time string for the object.

pCommon Return a string representing the object’s value with the format: Mar. 1, 1997 1:45 pm.

pCommonZ Return a string representing the object’s value with the format: Mar. 1, 1997 1:45 pm US/Eastern.

pDay Return the abbreviated (with period) name of the day of the week.

pMonth Return the abbreviated (with period) month name.

rfc822 Return the date in RFC 822 format.

second Return the second.

TimeMinutes Return the time string for an object not showing seconds.

Time Return the time string for an object to the nearest second.

timezone Return the time zone in which the object is represented.

year Return the calendar year of the object

yy Return calendar year as a 2 digit string.

Name Description

TABLE 30. Custom formats for date-time data
58 Zope Document Template Markup Language Reference

INDEX

Symbols
_variable, 16

A
abs, 9
aCommon, 57
aCommonZ, 57
acos, 10
aDay, 57
Alternate Python String Format

Syntax, 5
aMonth, 57
AMPM, 57
ampm, 57
AMPMMinutes, 57
appendHeader, 17
asin, 10
assume_children, 51
atan, 10
atan2, 10
atof, 12
atoi, 12
attributes, 3
AUTH_TYPE, 18
AUTHENTICATED_USER, 16,

18
AUTHENTICATION_PATH, 1

6

B
BASEn request variables, 15
batch

end-index, 34
start-index, 34

betavariate, 11
Bobo, 1, 15, 16, 18, 21, 22
boundary, 56
branches, 51
branches_expr, 51

C
capitalize, 4, 12, 23
capwords, 12
ceil, 10
CGI-defined request

variables, 17
choice, 13

choice method of the whrandom
attribute of the _ special
variable used in expr
attribute expressions, 11

chr, 9
collection-length, 24
comment, 17
CONTENT_LENGTH, 18
CONTENT_TYPE, 18
cookies, 16
cos, 10
cosh, 10
count, 12
count-nnn, 33
Creating document

templates, 21
cunifvariate, 11

D
Date, 57
Day, 57
day, 57
DayOfWeek, 57
dayOfYear, 57
dd, 57
digits, 12
divmod, 9
Document template classes, 21
document templates, 15
document_id, 15
document_title, 15
dollars-and-cents, 24
domain, 17
dtml-if, 27

E
e attribute, 10
electronic mail messages, 56
elif tag, 27
else tag, 27
encode, 56
end tags, 4
error_tb, 46
error_type, 46
error_value, 46
etc, 23, 25
except, 46
except tag, 46
exceptions, 46

exp, 10, 51
expireCookie, 17
expires, 17
expovariate, 11
expr, 15, 16, 23, 30, 50
expr attribute, 4
expr attribute, variable

lookup, 8
extended Python string format

syntax, 5

F
fabs, 10
fCommon, 57
fCommonZ, 57
find, 12
float, 9
floor, 10
fmod, 10
fmt, 23
footer, 51
form, 16
frexp, 10

G
gamma, 11
GATEWAY_INTERFACE, 17
gauss, 11
getattr, 9
getHeader, 17
getitem, 9
GetStatus, 17

H
h_12, 57
h_24, 57
has_key, 16
hasattr, 9
hash, 9
header, 51
hex, 9
hexdigits, 12
hour, 57
html_quote, 23
HTML4, 57
HTTP headers, 15
HTTP_REFERER, 15
hypot - hypotenuse, 10
Zope Document Template Markup Language Reference

I
id, 51
if, 45
if tag, 4
index, 12
insertion-by-name, 5
instance attributes, 18
int, 9
intermediate tags, 4
isCurrentHour, 57
isCurrentMonth, 57
isFuture, 57
isLeapYear, 57
isPast, 57
item, 16

J
join list or tuple, 13
Justification

center, 13
left, 13
right, 13

K
keys, 16
key-value pairs, 16

L
ldexp, 10
leaves, 51
len, 9
let tag, 42
letters, 12
log, 10
log10, 10
lognormvariate, 11
lower, 13, 23
lowercase, 12

M
maketrans, 13
mapping, 30, 39
math, 9
max, 9
max_age, 17
max-nnn, 33
mean-nnn, 33
median-nnn, 33
mime tag

disposition, 56
encode, 56
type, 56

min, 9

min-nnn, 33
minute, 58
missing, 23
mm, 58
modf, 10
Mon, 57
Mon_, 57
Month, 57
month, 58

N
name, 23, 30, 50, 51
name attribute, 3
namespace, 9, 41
newline_to_br, 23
next, 30
next attribute of the in tag, 30
next-batches, 39
next-sequence, 34

end, 37
end-index, 34
next-batches, 34
size, 34
start, 37
start-index, 34

None, 9
normalvariate, 11
notEqualTo(t), 58
nowrap, 51
null attribute, 23

O
objectValues, 50
oct, 9
octdigits, 12
ord, 9
orphan, 30
overlap, 30, 37

P
PARENTS, 16
paretovariate, 11
path, 17
PATH_INFO, 18
PATH_TRANSLATED, 18
pCommon, 58
pCommonZ, 58
pDay, 58
pi, 10
pMonth, 58
pow, 9
power, 10
PreciseAMPM, 58
PreciseTime, 58

previous, 30
previous-batches, 39
previous-sequence, 34

batches, 34
end, 37
end-index, 34
previous-batches, 34
size, 34, 35
start, 37
start-index, 34
start-number, 35

previous-sequence-size batch
processing variable, 34

Principia, 1, 3, 7

Q
QUERY_STRING, 18

R
randint, 13
randint method of the whrandom

attribute of the _ special
variable used in expr
attribute expressions, 11

random, 13
random method of the

whrandom attribute of the _
special variable used in expr
attribute expressions, 11

Redirect, 45
redirect, 17
REMOTE_ADDR, 18
REMOTE_HOST, 18
REMOTE_IDENT, 18
REMOTE_USER, 18
REQUEST, 16, 41
REQUEST_METHOD, 18
RESPONSE, 16
reverse, 30
rfc822, 58
rfind, 12
rindex, 12
round, 9

S
SCRIPT_NAME, 18
second, 58
secure, 17
seed, 13
sendmail, 56

mailfrom, 55
mailhost, 55
mailto, 55
port, 55
smtphost, 55
Zope Document Template Markup Language Reference

subject, 55
sequence-end, 32
sequence-index, 32
sequence-item, 32
sequence-key, 32
sequence-query, 34, 35
sequence-start, 32
sequence-step-size, 34
SERVER_NAME, 17
SERVER_PORT, 17
SERVER_PROTOCOL, 17
SERVER_SOFTWARE, 17
server-side-include syntax, 3
set, 16
SetBase, 17
setCookie, 17
SetHeader, 17
setStatus, 17
shorthand form of the expr

attribute, 4
shorthand version of the name

attribute, 3, 4
Simple Mail Transport

Protocol, 54
sin, 10
single, 51
sinh, 10
size, 30
size attribute, 23, 25, 34
size attribute of the in tag, 30
skip_unauthorized, 30, 51
smtphost, 54
sort, 29, 30, 51
spacify attribute, 23
split string, 13
sql_quote, 23
sqrt, 10
standard-deviation-nnn, 33
standard-deviation-n-nnn, 33
start, 30
start attribute, 34
str, 9

string, 9
strip, 13

leading white space, 13
trailing white space, 13

structured-text, 24
subclassing, 18
swapcase, 13

T
tag, 3
tan, 10
tanh, 10
thousands_commas, 23
Time, 58
TimeMinutes, 58
timezone, 58
total-nnn, 33
tpValues, 50
translate, 13
tree

collapse-all, 53
colspan, 52
expand-all, 53
level, 52
root-url, 52
state, 52
tree-c, 53
tree-e, 53
tree-s, 53

tree-item
expanded, 52
url, 52

tree-item-expanded, 52
try tag, 46
type, 45

U
Unauthorized, 45
uniform, 13
uniform method of the

whrandom attribute of the _
special variable used in expr
attribute expressions, 11

upper, 13, 23
uppercase, 12
URL, 16
url, 51
url_quote, 23
url_quote_plus, 23
URLn request variables, 15
Using document templates, 22
Using Document Templates

from Python, 21
Using document templates with

ZPublisher, 22

V
validate, 18
values, 16
var, 3, 4, 15, 56
var tag, 3
variance-nnn, 33
variance-n-nnn, 33
vonmisesvariate, 11

W
Web-request variables, 16
weibullvariate, 11
whitespace, 12
whole-dollars, 24
whrandom, 9
whrandom attribute of the _

special variable used in expr
attribute expressions, 9

Y
year, 58
yy, 58

Z
zfill, 13
Zope, 45
ZopeTime, 15
Zope Document Template Markup Language Reference

	Zope Document Template Markup Language Reference
	Table of Contents
	List of Tables
	Introduction
	Audience: Developer
	Purpose of DTML Reference

	General Information
	DTML Tag Syntax
	Server Side Include Format Syntax
	Alternate Python String Format Syntax
	Common Tag Attributes
	The name attribute
	The expr attribute
	Expression syntax

	TABLE 1. Expression examples
	Variable lookup
	The special namespace variable, _

	TABLE 2. Available attributes in the special variable, _
	TABLE 3. Attributes defined by the math module
	TABLE 4. Attributes defined by the random module
	TABLE 5. Attributes defined by the string module
	TABLE 6. Attributes defined by the whrandom module

	Name Lookup
	TABLE 7. Simplest-case steps for looking up names
	TABLE 8. Zope-defined Web request variables
	TABLE 9. Attributes of the REQUEST variable.
	TABLE 10. Attributes of the RESPONSE variable
	TABLE 11. CGI-defined Web request variables

	Access Control
	Using Document Templates from Python
	TABLE 12. Document template classes
	Creating document templates
	TABLE 13. Standard document template creation arguments.
	Using document templates
	TABLE 14. Standard arguments for calling document templates.
	Using document templates with ZPublisher

	The dtml-var Tag
	TABLE 15. dtml-var tag attributes
	Custom, Special, C, and Empty Formats
	TABLE 16. Special formats that may be used with the var tag fmt attribute
	TABLE 17. C-style specifiers for the fmt attribute

	Null Values
	Truncation
	A dtml-var Tag Example, the Default Document Source
	Figure 1. Default Zope Document source

	Conditional Insertion, the dtml-if and dtml-unless Tags
	Iterative Insertion, the dtml-in Tag
	Figure 2. DTML source to create an employee phone listing
	TABLE 18. dtml-in tag attributes
	Figure 3. DTML source to create an employee phone listing which properly handles the case of no e...
	The dtml-else Tag as an Intermediate Tag in the dtml-in Tag
	Figure 4. DTML source to create an employee phone listing which properly handles the case of no e...

	Variables Defined by the dtml-in Tag
	TABLE 19. Item variables defined by the dtml-in tag

	Summary Statistics
	TABLE 20. Summary statistic variables defined by the dtml-in tag

	Grouping Variables
	TABLE 21. Special variables for group processing

	Batch Processing
	TABLE 22. Batch-processing variables
	TABLE 23. Attributes of batch objects used when iterating over next-batches and previous-batches ...
	Figure 5. Table of 36 words
	Figure 6. DTML source to browse 36 words, 5 words at a time
	Figure 7. The output of the DTML source in figure 6 as displayed in a Web browser for several bat...
	TABLE 24. Query strings and previous batch URL and next batch URL for the batches shown in figure 7
	Orphan rows
	Overlapping batches
	Showing row number and row data in previous and next batch hyperlinks.
	Figure 8. Using batch-processing variables to number previous and next batch rows using Roman and...
	Figure 9. Using batch-processing variables to number previous-batch rows using letters and next-b...
	Showing information about multiple batches
	Figure 10. Use of DTML to provide links to all previous and next batches.

	Displaying Objects with the dtml-with Tag
	Using the only Attribute to Limit the Namespace

	Multiple assignments with the dtml-let Tag
	Evaluating Names or Expressions without Generating Text Using the dtml-call Tag
	Reporting Errors with the dtml-raise Tag
	Exception Handling with the dtml-try Tag
	The dtml-try tag optional dtml-else block
	The dtml-try tag optional dtml-finally block

	Excluding Source Text with the dtml-comment Tag
	Returning Data using the dtml-return tag
	Displaying Information Hierarchically: the dtml- tree tag
	Figure 11. A tree view of a folders in a Zope “school” site with (a) no top-level folders expande...
	Figure 12. DTML source to produce the tree views shown in figure 11.
	TABLE 25. dtml-tree tag attributes.
	Figure 13. Use of the branches tag to display all sub-objects in a folder.
	TABLE 26. Variables set by the dtml-tree tag when rendering sub-objects.
	TABLE 27. Variable that influence the dtml-tree tag

	Sending Mail: the dtml-sendmail tag
	Figure 14. A sample document that uses the dtml-sendmail tag
	Figure 15. A feedback form that collects a subject and body from a user and submits them to the S...
	TABLE 28. dtml-sendmail tag attributes

	Sending Attachments with the dtml-mime Tag
	Figure 16. The dtml-mime tag used to attach a file to an email message
	TABLE 29. dtml-mime tag attributes

	Appendix A, Date-time data
	TABLE 30. Custom formats for date-time data

