
February 4, 2000
Z SQL Methods User’s Guide

Document Revision 2.1.0, February 4, 2000
Modified by Pam Crosby
For Zope version 2.1.1

Copyright © Digital Creations
Z SQL Methods User’s Guide

Table of Contents

Z SQL Methods User’s Guide iii

Table of Contents
Introduction .. 1

Getting Started 3
Establish a database connection 3
Create a database method 4
Creating Search Interfaces 12

Object-Relational Data Integration .. 18
The relational data object model 18
Defining result classes 19

 Database Connections ... 21
Overview 21
Creating Database Connections 21
Connection Status 23
Connection Properties 23

 SQL Database Methods... 25
Overview 25
Creating SQL database methods 25
Testing and debugging SQL database-methods 27
Query templates 28
Editing SQL database methods 29
Advanced SQL database method configuration 30

Database Method
Document Template Markup Language Tags .. 32

Overview 32
Inserting values with the sqlvar tag 32
Inserting equality comparisons with sqltest 33
Inserting optional tests with sqlgroup 34

Index... 36

Introduction
Introduction
Audience: Developers

Z SQL Methods provide access to relational and external databases from Zope. Zope applications are built on object
oriented databases. All Zope data are stored in this object database. Database queries and commands can be used to
publish relational data, collect and store data in relational databases, and create complex web-deployed database
applications.

Z SQL Methods provide high performance by maintaining open database connections, so it is not necessary to connect to
a database on each request.

Z SQL Methods utilize features of Zope, to enable complex applications that would be harder to create in other
environments.
1 Z SQL Methods User’s Guide

Purpose of The Z SQL Methods User’s Guide
Purpose of The Z SQL Methods User’s Guide

This guide was created to provide an overview of the attributes of ZSQL Methods, Zope Structured Query Language. The
format of the guide provides step by step instructions on how to publish relational data on the Web. With Zope examples
and explanations, the user create SQL queries using DTML.

• The Zope object database can be queried like relational databases using DTML commands.
• You can query existing relational databases within Zope to provide web based content management.
• Relational database queries results are first-class Zope objects.
• The Z SQL methods supports the integration of relational data with the Zope object system.
• Database Connections explain how to manage and create connections to external databases.
• Instructions to create search interfaces between Zope and database queries are explored.

This guide will take you through creating, testing and debugging, query templates, and editing of SQL database methods.
SQL Methods supports a number of specialized tags for inserting values or comparisons into SQL source, an explanation
of these various tags are provided in this guide.
Z SQL Methods User’s Guide 2

Getting Started
Getting Started
Publishing relational data on the Web with ZSQL Methods typically requires three steps:

• Step One: Establish a database connection,
• Step Two: Create one or more database ZSQL methods, and
• Step Three: Create one or more search interfaces.

Establish a database connection
A database connection can provide several things; an abstraction of a database - relational or external and an interface to
a relational or other external database.

To create a database connection:

• Pick a database to use
• Determine identifying information needed by the database,
• Decide where in Zope the connection will be used, and
• Add a database connection to the desired Zope Folder.

For example, ZAcme, Inc. has a parts database that they wish to make available for searching. They have a Gadfly1
database that they wish to access within the Product area site. The ZAcme Product manager, Stan, adds a Z Gadfly
Database Connection. The form is displayed in Figure 1 where Stan can enter the id, title, and select a data source for the
database connection.

1 The Zope Gadfly product is a free Zope database adapter intended for demonstration purposes only. It is only suitable for learning
about Zope SQL Methods. Database operations are performed in memory, so it should not be used to create large databases.

Figure 1. An input form used to add a database connection
3 Z SQL Methods User’s Guide

Create a database method
Create a database method
The database method provides the mechanism for executing database queries and other commands. It also makes the
results available to Zope.

Stan starts with a small products database consisting of the two styles of widgets ZAcme creates and the database,
ProductDB using the connection. Stan need to place some values into the database. To accomplish this task, Stan will add
a SQL Method.

Add a SQL Method by selecting it from the Available Objects menu.

1. Name the SQL Method id sqlCreateTables.
2. The Connection Id will have the ProductDB highlighted.
3. In the Arguments field, enter add product_number, product_description, product_price and

ship_weight.

4. In the Query template, make the product_number and product_description string type. The
product_price and ship_weight are float type. Figure 2 shows the SQL Method after adding the method.

Figure 2. Created Table for Product Database
Z SQL Methods User’s Guide 4

Create a database method
The SQL used to perform the query is specified as a query template. Query templates use the same Document Template
Markup Language (DTML) used to create Zope’s DTML Documents and DTML Methods. Query templates provide
specialized tags for use in generating SQL.

Stan had created a product table and tested the method by pressing Add and Test. The screen shows that this method is not
a query and the table creation code is returned. If there had been an error, a message would be printed on the top of the
screen as shown in Figure 3.

Figure 3. SQL Method Test
5 Z SQL Methods User’s Guide

Data Entry
Data Entry
The next step is to create a data entry method for the table. Stan creates another SQL Method to insert products into the
product table.

1. Enter sqlInsertProduct into the id field.
2. Add Insert Products for the Title.
3. In the Arguments field add product_number ship_weight product_price product_description.

4. The Query template area add the SQL code shown in Figure 4.

After entering the information, Stan selects Add and Test to check for errors. The test view of the SQL method gives the
fields with a form for entering the data. Stan enters information about the Historical Widgets and submits his query. .

Figure 4. Insert Values SQL Method

Figure 5. Insert Values Form from sqlInsertProduct
Z SQL Methods User’s Guide 6

Data Verification
Data Verification
The next step in this procedure is to verify the values entered in the database. When Stan submits the query, the screen
shows the SQL used and the entered data, Figure 6. Stan enters the Millenium Widgets and Products Manual data in the
same way using the sqlInsertProduct method.

Figure 6. Insert Values Result
7 Z SQL Methods User’s Guide

Data Retreival
Data Retreival
To retrieve data from the products database, Stan will have to create an query.

 An dtml-sqltest tag is used to insert an SQL test that compares the column, product_number to a value given as input
in the argument product_number. Stan adds another SQL Method named lookup_product.

1. Enter the lookup_product into the id field.
2. Add Lookup a product given a product number for the title.
3. The argument field only needs the product_number.
4. The Query template has the sqltest to allow comparisons. (Figure 7)

Figure 7. Add SQL method for Product Query
Z SQL Methods User’s Guide 8

Data Retreival
 Stan adds and tests the SQL method by pressing the Add and Test option. An input form is displayed, as shown in Figure
8. Product number widget is added to the form and submitted.

When the query is submitted, the output is displayed along with the SQL that was generated as shown in figure 9.

After a database method has been created, it must be tested to:

• Make sure that the SQL statement performs the desired query or action, and
• To allow Zope to collect information about results needed for building a search interface.

Figure 8. Lookup Product test form

Figure 9. Test Output
9 Z SQL Methods User’s Guide

Data Retreival
A database method can be tested when it is created by clicking on the “Add and Test” button on the add form or any any
time by selecting the test view. After a database method has been created and tested, a search interface can be created to
publish the data on the web. This leads to exploring Search Interfaces in the next section.
Z SQL Methods User’s Guide 10

Creating Search Interfaces
Creating Search Interfaces
Database methods provide an interface between Zope and database queries. To publish data on the Web, Zope DTML
Documents must be created if necessary, to collect input data, and to display reports. Input forms and reports can be
created from scratch, but is easier to use the Z Search Interface Creation Wizard to automatically create search interfaces.
The search interface wizard collects basic information, such as the name of a database method and names of input and
report documents to be created and then writes new documents based on database schema information. After the
documents have been created with the search interface wizard, they can be customized.

Figure 10 shows the Search Interface Creation Wizard being used to create a search interface for the lookup_product
database method. The first option in the form is a list of searchable objects found in the current folder, or in folders above
the current folder. Searchable objects are objects, like ZSQL Database Methods, that support searching for information2.
You can select one or more searchable objects to be included in the search interface. If you select multiple searchable
objects, the generated input form will collect information needed for all objects, and the generated report will show results
for each object, in sequence.

2 A number of Zope-based products implement the searchable object interface. Other searchable objects that are available for Zope
include Tabula Collections, and Zope Network Clients.

Figure 10. Search interface creation wizard
11 Z SQL Methods User’s Guide

Creating Search Interfaces
Figure 11 shows the contents of the Product folder after the New Search Interface has been submitted. The contents list
includes two new documents, index_html, and tabular_product_report. By naming the input form
index_html, we have created a “home page” for the Product area that performs a product search. For example, if
someone visited the URL http://zacme.com/ZAcme/Product, they would see the search input form shown in
Figure 12.

Figure 11. Contents view of the Products folder after adding a tabular search interface.

Figure 12. An automatically generated input form for a tabular product search
Z SQL Methods User’s Guide 12

Creating Search Interfaces
The source of the generated input form is shown screen capture in figure 13. The input form is a Zope DTML Method
object.

There are a number of features of the input form that should be noted:

• DTML var and if tags are used to construct a “Cancel” button if the HTTP Referer header is supplied in the request.
The DTML Method view shows the DTML script created with the Search interface.

• Stan wants to add the CANCEL button. He modifys the script.
• By adding the following lines after <tr><td colspan=2 align=center>

<dtml-if HTTP_REFERER>

<input type=”SUBMIT” name=”SUBMIT” value=”Cancel”>

<INPUT NAME=”CANCEL_ACTION” TYPE=”HIDDEN”

VALUE=”<dtml-var HTTP_REFERER>”>

</dtml-if HTTP_REFERER>

• The variables standard_html_header and standard_html_footer are used to provide standard look-and-
feel components in the form.

• For example, we might want to define a logo for the ZAcme Products division to be included at the top of all
documents. We add a Zope Image object, named logo, to the Product folder, and we add a Zope DTML Document
named standard_html_header that includes a reference to the logo (Figure 14). Inserting an Image object with

Figure 13. Index_html view
13 Z SQL Methods User’s Guide

Creating Search Interfaces
a dtml-var tag causes an HTML IMG tag to be inserted referring to the image and including an ALT attribute with the
title defined for the Image object. After these changes, the input form is displayed as shown in Figure 15.

When Stan submits the input form, the form has the ZAcme Logo across the top. Figure 16 shows a the output of the
tabular_product_report.

The source of tabular_product_report is shown in figures 17 -19. It is useful to walk through the generated
document template source. The generated source illustrates a number important document template concepts and features
of database methods. The section “Interactive Insertion, the dtml-in Tag” in the Document Template Markup Language
Reference provides a detailed description of document template dtml-in tags, including batch processing.

Figure 14. A standard_html_header document that includes a logo

Figure 15. The input form for a tabular product
search, after adding a standard_html_header and

a logo to the Computer folder.

Figure 16. Output of a search using the
tabular_product_report created by the

search interface wizard.

<HTML>
<HEAD><TITLE>
<dtml-var title_or_id></TITLE></HEAD>
<BODY BGCOLOR="#FFFFFF">
<dtml-var logo>

Z SQL Methods User’s Guide 14

Creating Search Interfaces
The source begins with the insertion of standard_html_header, as usual. An dtml-in tag follows the insertion of
the standard header. The dtml-in tag is used to iterate over the results of the call method, lookup_product. The
database method receives its parameters from the incoming HTTP request, so parameters need not be passed explicitly3.
The dtml-in tag uses the size and start attributes to request batch processing support4. This causes a number of special
variables to be defined, which are used later in the dtml-in tag source. These include previous-sequence,
sequence-query, previous-sequence-start-number and previous-sequence-size.

Figure 17. Part one of the source of the tabular_product_report document that was generated by the search-
interface creation wizard.

3 Parameters can be passed explicitly using an expr attribute in the in tag. Parameters are passed using Python “keyword” parameter
syntax. For example, to call the lookup_product method with a product_number of ‘widget’, the following dtml-in tag would be
used:

<dtml-in expr=”lookup_product(product_number=’widget’)”

size=50 start=query_start>

<!--#in expr=lookup_product(product_number=’widget’)

size=50 start=query_start--> (Zope 1.1x version depreciated)
4 See “Batch Processing” in the Document Template Markup Reference.

<dtml-var standard_html_header>
<dtml-in lookup_part size=50 start=query_start>

<dtml-if sequence-start>

<dtml-if previous-sequence>

<a href="<dtml-var URL><dtml-var sequence-query>
query_start=<dtml-var
previous-sequence-start-number>">

(Previous <dtml-var previous-sequence-size> results)

</dtml-if previous-sequence>

<table border>
<tr>

<th>PRODUCT NUMBER</th>
<th>SHIP WEIGHT</th>
<th>PRODUCT PRICE</th>
<th>PRODUCT DESCRIPTION</th>

</tr>

</dtml-if sequence-start>
15 Z SQL Methods User’s Guide

Creating Search Interfaces
Immediately after the dtml-in tag is a dtml-if tag that inserts text when the variable sequence-start is true, or, in
other words, when displaying the first item in a batch of items. The inserted text includes a link to previous batches of data
and a table header showing the data column names. The link to previous batches is inserted only if there are previous
batches, as indicated by the previous-batches variable. The link uses the dtml-in tag variables sequence-query,
previous-sequence-start-number, and previous-sequence-size.

After the table header is inserted, the actual data for each item in the batch is inserted (figure 18).

The last part of the text following the dtml-in tag is text to insert a table closing tag and to show a link to additional
batches of data, if any (Figure 19). Two dtml-if tags are used to insert the text only when displaying the last item in a batch
and to only include the link to following batches. Finally, the source ends with an dtml-else tag that inserts text if there are
no results for the given inputs.

After the search-interface creation wizard has been used to create report and input-form documents, the documents can be
edited to meet specific needs.

Figure 18. Part two of the tabular_product_report Document,
showing the DTML text to insert data items.

Figure 19. Part three of the tabular_product_report document, showing source to display following batches and text to be
inserted when there are no results.

<tr>
<td><dtml-var product_number></td>
<td><dtml-var ship_weight></td>
<td><dtml-var product_price></td>
<td><dtml-var product_number></td>

</tr>

<dtml-if sequence-end>

</table> <dtml-if next-sequence>
<a href="<dtml-var URL>
<dtml-var sequence-query>

query_start=<dtml-var
next-sequence-start-number>">

(Next <dtml-var next-sequence-size> results)

</dtml-if next-sequence>
</dtml-if sequence-end>

<dtml-else>

There was no data matching this <dtml-var title_or_id>
query.
Z SQL Methods User’s Guide 16

Object-Relational Data Integration
Object-Relational Data Integration
ZSQL Methods support the integration of relational data with the Zope object system. Results of relational database
queries are not just data. Rather, results of relational database queries are objects, which may have methods and can
acquire information and behavior from the Zope environment. ZSQL Methods that use SQL select statements provide
virtual collections of objects and can support direct object addressing through URLs.

The relational data object model
Data from relational database queries are returned as sequences of Python objects. Because each query result is a
sequence, the dtml-in tag and the Python for statement may be used to iterate over results. Each element in a result
sequence is a Python object that encapsulates a single record of a result table. The Python objects that encapsulates result
records are called record objects.

Record objects provide access to result data by column name. Result columns are available as both attributes and as
mapping keys of record objects. This allows columns to be accessed with simple dtml-var tags inside dtml-in tags when
iterating over query results. For example, consider a Z SQL Method named customers that returns columns
CUSTOMER_ID, NAME, and PLANET. From DTML, the customer names can be accessed with:

<dtml-in customers>
<dtml-var NAME>

</dtml-in>

and from Python, the customer names can be accessed with:

for customer in customers():
print customer.NAME

or

for customer in customers():
print customer[‘NAME’]

Column data can also be accessed using integer column numbers. Each record object is a sequence of column values. For
example, the data for a record can be output without use of column names in DTML:

<table>
<dtml-in customers>

<tr>
<dtml-in sequence-item>

<td><dtml-var sequence-item></td>
</dtml-in>

</tr>
</dtml-in>
</table>
17 Z SQL Methods User’s Guide

Defining result classes
and in Python:

for customer in customers():
for data in customer:

print data

Defining result classes
The Advanced view on database methods provides the ability to supply Python classes from which result objects can
inherit methods. This facility allows rich behavior to be provided using the Python programming language. Individual
database results are instances of subclasses and have data attributes from the relational database.

In the future, it will be possible to define ZClasses to provide behavior to database results.

Acquiring Data and Behavior
Database results can acquire data and methods from their environment. Methods, such as DTML Documents, External
Methods and other SQL Methods that are defined in the folder containing an SQL method can be applied directly to
objects returned from SQL queries.

Object Access
There are two ways to access objects through ZSQL Methods. Objects can be accessed by iterating over the results of
calling a ZSQL Methods as demostrated in the chapter before. The second way is to direcly access object through URL.

For database methods that return individual records, objects may be accessed directly through URL traversal. Consider
the lookup_part query in figure 8. This method takes a single argument, a product number, and returns the
corresponding part. A URL can be used to access a specific part by adding the input argument name,
product_number and a specific product name to the URL for the database method. For example, to look up product
number widget, a URL like:

http://zacme.com/ZAcme/Product/lookup_part/product_number/widget

might be used. Normally, record objects don’t provide a default interface, so it will be necessary to invoke a method of
the object, as in:

http://zacme.com/ZAcme/Product/lookup_part/product_number/widget/orders

This example uses the method orders on a product number. The orders method was not created in previous section.
This method could be defined in a class specified in the ZSQL Method Advanced view, or it could be a method that is
acquired from the Zope environment. In the Advanced view, select the allow transversal option for the URL access to
funnction properly. Figure 20 shows the transveral option as well as the place for the class definition. More information
is available in the SQL Database Methods chapter.
Z SQL Methods User’s Guide 18

Object Access
Figure 20. Advanced Options for SQL Method
19 Z SQL Methods User’s Guide

Database Connections
 Database Connections

Overview
Database Connections are used to establish and manage connections to external databases, such as relational databases.
Database Connections must be established before database methods can be defined. Moreover, every Z SQL Method
must be associated with a Database Connection.

Database Connections provide management interfaces for connecting to and disconnecting from the external database.
Some database connections provide interfaces for browsing database schema information. Database connections are
provided in Zope database adapter products. Database adapters are available for a number of databases, including ODBC,
Solid, Oracle, MySQL and Gadfly.

The information needed to connect to a database depends on the specific database being used. Some database adapters
provide database connection creation interfaces that let you select from a known set of databases, while others require you
to enter a connection string.

Database connections are established when a database connection is created and later whenever a database connection is
used. Database connections are automatically closed after a period of disuse and reopened when necessary.

Creating Database Connections
To create a database connection, display the Contents view of a Folder, and select “Z Gadfly Database Connection” from
the available object list. The database connection add form will be displayed Figure 21. Enter the id, title, and
information identifying the database, such as a data source name or connection string. Normally, a connection to the
database is established immediately, To delay connecting to the database until later, select the Connect immediately check
box.
Z SQL Methods User’s Guide 20

Creating Database Connections
Figure 21. Add Connections Form
21 Z SQL Methods User’s Guide

Connection Status
Connection Status
The Status view shows whether the database connection is open or not, and provides a button to open the connection if it
is closed, or to close it if it is open (Figure 22).

Connection Properties
The Properties view (Figure 23) provides a place to change the database connection title and other database-specific
connection information.

Figure 22. A database-connection status view

Figure 23. Database-connection properties view
Z SQL Methods User’s Guide 22

Connection Browse
Connection Browse
Some databases provide a Browse view for browsing the tables defined in a database. Database tables are listed and
individual table listings may be expanded to show table schemas as shown in Figure 24.

Connection Security
As with all objects in Zope, you can specify security options for the database connection. These options can be given to
individual user or groups. The options available are shown in Figure 25.

Figure 24. Database Connection Browse

Figure 25. Database Connection Security
23 Z SQL Methods User’s Guide

SQL Database Methods
 SQL Database Methods

Overview
Z SQL Database Methods provide a means for treating SQL database programs as objects that can be used to publish
database data and create advanced Zope applications.

Separation of database management and presentation management is accomplished through database methods and
documents. Unlike many other Zope objects, such as DTML Methods and Images, database methods are not meant to be
accessed directly through the Web. Rather, they are used by other Zope objects, such as DTML Documents to obtain data
to be displayed. SQL Database Methods are used to manage SQL, and DTML Methods are used to manage presentation.

Creating SQL database methods
An SQL Database Method is created by selecting “Z SQL Database Method” in the add list of a Folder Contents view,
after which an input form is presented. In addition to the standard Zope properties, id and title, three additional properties
may be specified.

 The required property, connection id is used to specify which database connection will be used by the database method. A
Database Connection object must be created prior to creating an SQL Database Method. The database connection can be
created in the current folder, or in any folder above the current folder. The connection list shown in the input form shows
all connections that can be found in the current folder or in folders above the current folder.

The optional property, arguments, is used to specify one or more input arguments. Input arguments are used to customize
a query based input data, such as data passed in a Web request, or in a DTML expr attribute. Arguments not specified in
this list will not be acquired from the REQUEST environment (e.g., form variables). Multiple arguments are separated by
one or more spaces or tab characters. Each argument is specified as an argument name, an optional argument type, and an
optional argument default. The argument name should consist of letters, underscores, and digits and should start with a
letter.

name:type=”default”
Z SQL Methods User’s Guide 24

Creating SQL database methods
The type should be one of the values shown in Table 1. The default type is string.

Type Description

int An integer value.

float A floating-point number.

string String. This is the default type.

required A non-empty string

date A date-time value. A wide variety of formats are
accepted1. Year, months, and day cab be provided in any
unambiguous order2. Month names and abbreviations of
various forms may be provided. Hours, minutes and
seconds are optional and are separated from the date by
one or more spaces and from each other by colons. A 24-
hour clock is assumed unless times are followed by am,
AM, pm or PM.

1. This includes the ISO standard format: yyyy-mm-dd hh:mm:ss
2. An input 1-2-1997 is interpreted as January 2, 1997.

list A list of values. This is useful to insure that a sequence of
values is available when the query template uses an dtml-
in tag to iterate over inputs. The list type may be combined
with the int, float, and date types to specify a list of
integers, floating-point numbers, and dates.

lines A single input string is split on line endings into a list of
one or more values.

tokens A single input string is split on sequences of one or more
space, tab, new-line, or carriage-return characters into a
list of values.

text A single input string in which sequences of new-line and
carriage-return characters are converted to single newline
characters.

TABLE 1. Database-method input argument types
25 Z SQL Methods User’s Guide

Testing and debugging SQL database-methods
Table 2 shows several examples of input arguments.

The query template is the source of the desired SQL query or commands in DTML format. DTML tags may be used to
substitute text into a query based on input data and on information defined in Zope.

Testing and debugging SQL database-methods
After an SQL Database Method has been created, it should be tested to make sure that the query template is correct and to
generate search interfaces. To test an SQL Database Method, select its icon in the contents view of the containing Folder.
Selecting the Test tab causes an input form to be displayed, as shown in Figure 5. Selecting the “Submit Query” button
causes the database method to be executed and the results to be displayed in a table . The SQL used is also shown. If the
results are not what was expected, the SQL may be inspected to see if the expected substitutions were performed.

If an error occurs, an error message is displayed as shown in Figure 26.

Arguments Explanation

x y Two string arguments, x and y

name:required age:int A non-blank string argument name, and an integer argument,
age

name:required color:required=”blue” A non-blank string argument name, and an optional non-blank
string argument, color, that defaults to “blue”

ids:list:int An argument, ids, that must be a list of integers.

ids:tokens An argument, ids that is a string that will be broken into a list
of tokens.

TABLE 2. Some sample database-method input arguments

Figure 26. Test output showing an error message and SQL used.
Z SQL Methods User’s Guide 26

Query templates
Query templates

Query templates are used to generate SQL statements based on Web request input data and other Zope data. Consider the
following example of a query template:

SELECT * FROM product
WHERE product_number = <dtml-sqlvar product_number type=string>

The intention is to dynamically create a query using data that either comes in with the HTTP REQUEST or is otherwise
available to the SQL Database Method object (e.g., acquired data, folder property data, etc.). In this example, an sqlvar
tag was used to insert a value into an sql statement.

Consider an HTML form that contains the following INPUT tag:

<INPUT NAME=”product_number” TYPE=”text” SIZE=”6”>

If the user entered the value widget into the product_number input box then the query template shown above would
be evaluated to:

SELECT * FROM product WHERE product_number = 'widget'

An ordinary dtml-var tag could be used as well, however, the sql_quote var tag attribute should be used to make sure
that SQL quote characters are handled correctly. The dtml-var tag would be useful if special dtml-var tag features like the
lower attribute were needed:

SELECT * FROM parts
WHERE part_no = <dtml-var part_number sql_quote lower>.

Because query templates are themselves document templates you have access to all of the DTML constructs. This
includes all of the looping, conditional and iterative commands. Consider the following query template:

SELECT * FROM sales where part_no in
(
<dtml-in list_promotional_items>

<dtml-unless sequence-start>,</dtml-unless>
'<dtml-var promo_item_part_number fmt=sql-quote>'

</dtml-in list_promotional_items>
)

This SQL Database Method would executes another SQL Database Method called list_promotional_items and,
for every row in the result, insert a case in the SQL dtml-in list. In this example, the variable
promo_item_part_number is in the results of the list_promotional_items query.

The query templates can get their variables from either the HTTP request or from any variables available in the Folder
containing the SQL Database Method object. It is often useful to develop SQL Database Methods with this lookup
order/variable resolution in mind. The following rules control the order in which variable lookup is performed, depending
on whether or not the variable name in question is in the arguments property of the SQL Database Method.
27 Z SQL Methods User’s Guide

Editing SQL database methods
It is often necessary to execute more than one SQL statement in a single SQL Database Method. SQL Database Methods
define a variable, sql_delimiter, that can be used to divide individual SQL statements. Consider the following two
SQL statements which debit a user’s checking account and credit a loan account by the same amount:

UPDATE checking_account_balances WHERE
<dtml-sqltest customer_number column=customer_no type=string>

SET balance = balance - <dtml-sqlvar loan_payment type=float>

<dtml-var sql_delimiter>

UPDATE loan_account_balances WHERE
<dtml-var customer_number column=customer_no type=string>

SET balance = balance + <dtml-sqlvar loan_payment type=float>

Note that no more than one SQL select statement may be used in a single SQL Database Method.

Editing SQL database methods

Editing database methods is done using the database method Edit view. In addition to the standard Zope property, title,
the connection id, arguments, and query template can be changed.

It is recommended that you test a database method after editing it, using the Test view.

In arguments list? First Lookup Second lookup

YES Variables in HTTP REQUEST Variables in the folder containing the
SQL Database Method.

NO Variables in the folder containing the
SQL Database Method

NONE

TABLE 3. Lookup order for SQL template variables
Z SQL Methods User’s Guide 28

Advanced SQL database method configuration
Advanced SQL database method configuration

The Advanced view (Figure 27) provides access to advanced configuration properties of SQL Database Methods.

Advanced properties include:

• Maximum number of rows retrieved
• Maximum number of results in the cache
• Maximum time (seconds) to cache results
• Allow direct traversal

You can also designate a class for the data records retrieved by the SQL Database Method. In order to use this advanced
feature you need to define both a class name and a class file name. The class file must be stored in the Extensions
directory of the Zope installation. A sample class is detailed in the Database Method Classes section.

Maximum Number of Rows Retrieved

The maximum number of rows retrieved can be limited by setting this value. This value cannot be blank. This parameter
limits the number of rows returned from the underlying database to the SQL Database Method object.

Figure 27. SQL Database Method Advanced view
29 Z SQL Methods User’s Guide

Caching results
Caching results

For performance reasons, it is possible to cache the results of queries. Caching is controlled by the properties: maximum
number of results in the cache and maximum time (seconds) to cache results. The property, maximum number of results in
the cache, limits how large the cache can grow. The property, maximum time (seconds) to cache results, sets the
maximum age of cached results. Setting either of these to zero disables caching. the key for entries in this cache is the
rendered SQL statement that generated the result.

Direct Traversal
Database methods that return a single record requested with a primary key can be traversed with a URL to access a record
object directly. Normally, argument names must be included in the URL. If the database method has a single argument,
then the allow direct traversal is displayed in the Advanced view. If argument values are known to not conflict with
database method names, then, the allow direct traversal option should be enabled and the argument name need not be
included in the URL.

Database Method Classes

It is possible to assign a class to the records returned by a Database Method. This class is a Python1 class defined in a
Python file located in the Extensions directory2 of the Zope installation being considered.

Classes can be used to augment otherwise static records returned from a database query with more interesting behavior.
For example consider the following class definition (in a file called hardware.py located in the Extensions directory of the
current Zope installation):

class ComputerHardwareItem:
def dollar_volume_backordered(self):

return self.unit_price * self.backordered

By virtue of assigning the ComputerHardwareItem class to this Database Method we now have access to the
dollar_volume_backordered function for each record returned by the query. We can now refer to the
dollar_volume_backordered DTML variable inside an iteration over query results.

1. Python is a very high-level object-oriented programming language. For more information on Python, visit
http://www.python.org.

2. For security reasons, the Python file cannot be uploaded via the Web. You must have access to the file system of the server that is
running Zope.
Z SQL Methods User’s Guide 30

Database Method Document Template Markup Language Tags
Database Method
Document Template Markup Language Tags

Overview

SQL Methods support a number of specialized tags for inserting values or comparisons into SQL source. These tags
provide a number of advantages:

• SQL Templates are simpler and clearer,
• Values are type-checked to make sure that the data are at least syntactically valid,
• Single quotes in string values are appropriately quoted,
• When doing comparisons in selections, multiple input values can be automatically rendered using the SQL in test.
• When doing comparisons in selections, inputs may be optional.

Inserting values with the sqlvar tag

The sqlvar tag is used to type-safely insert values into SQL text. The sqlvar tag is similar to the dtml-var tag, except that it
replaces text formatting parameters with SQL type information.

The attributes used by the sqlvar tag are shown in Table 4.

For example, given the tag:

<dtml-sqlvar x type=nb optional>

if the value of x is:

Let’s do it

then the text inserted is:

’Let’’s do it’

however, if x is omitted or an empty string, then the value inserted is null.

Name Description

name The name of the variable to insert. As with other DTML tags, the name= prefix may be, and usually is, omitted.

type The data type of the value to be inserted. This attribute is required and may be one of string, int, float, or
nb. The nb (for non blank) data type indicates a string that must have a length that is greater than 0.

optional A flag indicating that a value is optional. If a value is optional and is not provided (or is blank when a non-blank
value is expected), then the string null is inserted.

TABLE 4. Attributes of the sqlvar tag
31 Z SQL Methods User’s Guide

Inserting equality comparisons with sqltest
Inserting equality comparisons with sqltest

The sqltest tag is used to test whether an SQL column is equal to a value given in a DTML variable. .

For example, given the tag:

<dtml-sqltest color column=color_name type=nb multiple>

If the value of the color variable is "red", then the following test is inserted:

column_name = ’red’

If a list of values is given, such as: "red", "pink", and "purple", then an SQL in test is inserted:

column_name = in (red, pink, purple)

The optional parameter 'op' support the following operations:

eq renders to '=' ne renders to '<>'
gt renders to '>' ge renders to '>=' also gte
lt renders to '<' le renders to '<=' also lte

So because of this, you can render:

<dtml-sqltest foo op=gt type=string>

results will be:

foo > 'bar'

One note is that if 'op' doesn't match the options listed above, it will render whatever is provided, so:

<dtml-sqltest foo op=like type=string>

would render as:

foo like 'bar'

name description

name The name of the variable to insert. As with other DTML tags, the name= prefix may
be, and usually is, omitted.

type The data type of the value to be inserted. This attribute is required and may be one of
string, int, float, or nb. The nb data type indicates a string that must have a
length that is greater than 0.

column The name of the SQL column, if different than name.

multiple A flag indicating whether multiple values may be provided.

optional A flag indicating if the test is optional. If the test is optional and no value is provided
for a variable, or the value provided is an invalid empty string, then no text is inserted.

op A parameter used to choose the comparision operater that is rendered. Default is ‘=’.

TABLE 5. Attributes of the sqltest tag
Z SQL Methods User’s Guide 32

Inserting optional tests with sqlgroup
Inserting optional tests with sqlgroup

It is sometimes useful to make inputs to an SQL statement optional. Doing so can be difficult, because not only must the
test be inserted conditionally, but SQL boolean operators may or may not be needed depending on whether other, possibly
optional, comparisons have been done. The sqlgroup tag automates the conditional insertion of boolean operators.

The sqlgroup tag is a block tag. It can have any number of and and or continuation tags. The attributes of the sqlgroup
tag are shown in Table 6.

The sqlgroup tag checks to see if text to be inserted contains other than whitespace characters. If it does, then it is inserted
with the appropriate boolean operator, as indicated by use of an 'and' or 'or' tag, otherwise, no text is inserted.

Suppose we want to find people with a given first or nick name, city and minimum and maximum age. Suppose we want
all inputs to be optional, but want to require some input. We can use DTML source like the following:

select * from people
<dtml-sqlgroup required where>

<dtml-sqlgroup>
<dtml-sqltest name column=nick_name type=nb multiple optional>

<dtml-or>
<dtml-sqltest name column=first_name type=nb multiple optional>

</dtml-sqlgroup>
<dtml-and>

<dtml-sqltest home_town type=nb optional>
<dtml-and>

<dtml-if minimum_age>
age >= <dtml-sqlvar minimum_age type=int>

</dtml-if>
<dtml-and>

<dtml-if maximum_age>
age <= <dtml-sqlvar maximum_age type=int>

</dtml-if>
</dtml-sqlgroup>

name description

required The required attribute is used to flag groups that must include at least one test. This
is useful when you want to make sure that a query is qualified, but want to be
flexible about how it is qualified.

where The where flag is used to cause an sql “where” to be included if a group contains any
text. This attribute is useful for queries that may be either qualified or unqualified.

TABLE 6. Attributes of the sqlgroup tag
33 Z SQL Methods User’s Guide

Inserting optional tests with sqlgroup
If we evaluated this template with values set for home town and name, we would get an SQL query like the following:

select * from people
where
((nick_name='Jim'
or first_name='Jim'

)
and home_town='Cleveland'

)

This example illustrates how groups can be nested to control boolean evaluation order. It also illustrates that the grouping
facility can also be used with other DTML tags like dtml-if tags.
Z SQL Methods User’s Guide 34

Inserting optional tests with sqlgroup
35 Z SQL Methods User’s Guide

Z SQL Methods User’s Guide 36

Index

A
Acquiring Data and Behavior 18
arguments 24, 27, 28

C
Caching results 30
Connection Browse 23
connection id 28
Connection Properties 22
Connection Status 22
Create a database method 4
Creating Database Connections 20
Creating Search Interfaces 11
Creating SQL database methods 24

D
Database Method Classes 30
Defining result classes 18
Direct Traversal 30
Document Template Markup Language Tags 31

E
Establish a database connection 3

G
Getting Started 3

I
Inserting equality comparisons with sqltest 32
Inserting optional tests with sqlgroup 33
Inserting values with the sqlvar tag 31
Introduction 1

M
Maximum Number of Rows Retrieved 29

O
Object Access 18
Object-Relational Data Integration 17

P
Purpose 2

Q
query template 26, 28

S
SQL Database Methods 24
sqltest 8
string 25

T
Testing and debugging SQL database-methods 26
The relational data object model 17
title 28

V
var 27

Z
Z Gadfly Database Connection 3
Z SQL Database Methods 11

	Z SQL Methods User’s Guide
	Table of Contents
	Introduction
	Purpose of The Z SQL Methods User’s Guide
	Getting Started
	Establish a database connection
	Figure 1. An input form used to add a database connection

	Create a database method
	1. Name the SQL Method id sqlCreateTables.
	2. The Connection Id will have the ProductDB highlighted.
	3. In the Arguments field, enter add product_number, product_description, product_price and ship_...
	4. In the Query template, make the product_number and product_description string type. The produc...
	Figure 2. Created Table for Product Database
	Figure 3. SQL Method Test

	Data Entry
	1. Enter sqlInsertProduct into the id field.
	2. Add Insert Products for the Title.
	3. In the Arguments field add product_number ship_weight product_price product_description.
	4. The Query template area add the SQL code shown in Figure 4.
	Figure 4. Insert Values SQL Method
	Figure 5. Insert Values Form from sqlInsertProduct

	Data Verification
	Figure 6. Insert Values Result

	Data Retreival
	1. Enter the lookup_product into the id field.
	2. Add Lookup a product given a product number for the title.
	3. The argument field only needs the product_number.
	4. The Query template has the sqltest to allow comparisons. (Figure 7)
	Figure 7. Add SQL method for Product Query
	Figure 8. Lookup Product test form
	Figure 9. Test Output

	Creating Search Interfaces
	Figure 10. Search interface creation wizard
	Figure 11. Contents view of the Products folder after adding a tabular search interface.
	Figure 12. An automatically generated input form for a tabular product search
	Figure 13. Index_html view
	Figure 14. A standard_html_header document that includes a logo
	Figure 15. The input form for a tabular product search, after adding a standard_html_header and a...
	Figure 16. Output of a search using the tabular_product_report created by the search interface wi...
	Figure 17. Part one of the source of the tabular_product_report document that was generated by th...
	Figure 18. Part two of the tabular_product_report Document, showing the DTML text to insert data ...
	Figure 19. Part three of the tabular_product_report document, showing source to display following...

	Object-Relational Data Integration
	The relational data object model
	Defining result classes
	Acquiring Data and Behavior
	Object Access
	Figure 20. Advanced Options for SQL Method

	Database Connections
	Overview
	Creating Database Connections
	Figure 21. Add Connections Form

	Connection Status
	Figure 22. A database-connection status view

	Connection Properties
	Figure 23. Database-connection properties view
	Connection Browse
	Figure 24. Database Connection Browse

	Connection Security
	Figure 25. Database Connection Security

	SQL Database Methods
	Overview
	Creating SQL database methods
	TABLE 1. Database-method input argument types
	TABLE 2. Some sample database-method input arguments

	Testing and debugging SQL database-methods
	Figure 26. Test output showing an error message and SQL used.

	Query templates
	TABLE 3. Lookup order for SQL template variables

	Editing SQL database methods
	Advanced SQL database method configuration
	Figure 27. SQL Database Method Advanced view
	Maximum Number of Rows Retrieved
	Caching results
	Direct Traversal
	Database Method Classes

	Database Method Document Template Markup Language Tags
	Overview
	Inserting values with the sqlvar tag
	TABLE 4. Attributes of the sqlvar tag

	Inserting equality comparisons with sqltest
	TABLE 5. Attributes of the sqltest tag

	Inserting optional tests with sqlgroup
	TABLE 6. Attributes of the sqlgroup tag

