
1

Purpose

This documentation explains the purpose of the DCWorkflow product and how to

make use of it. DCWorkflow is a product made to be used with Zope CMF from Zope

Corporation. Familiarity with Zope and CMF is assumed.

What is Workflow?

Workflow is the series of interactions that should happen to complete a task.

Business organizations have many kinds of workflow. For example, insurance

companies process claims, delivery companies track shipments, and schools accept

applications for admission. All these tasks involve several people, sometimes take a long

time, and vary significantly from organization to organization.

The goal of workflow software is to streamline and track workflow activity.

Since different organizations have different workflow processes, workflow software must

be flexible and easy to customize.

The DCWorkflow Concept

DCWorkflow makes a few simple assumptions about your workflow:

� There is a single object in the system that represents the task to be completed.

� Every object of a given type goes through the same workflow.

� Tasks are assigned to user roles, not individuals.

DCWorkflow makes it easy to implement workflows that fit this description. If

your workflow does not fit these criteria, you should weigh the alternatives. OpenFlow,

also for Zope, is more flexible but more complex to set up.

2

Defining Workflow States

Using workflow states you can add state to your content that is specific to your

business process.

CMF comes with a default workflow with three states: private, pending, and

published. In the default configuration, all content in the CMF is set to operate in that

workflow. When an object is in the private state, only the user who created it and site

managers can view and change it. The user is provided with a link to "submit" the

content, which puts it in the pending state. Then a user with the "reviewer" role is given

the opportunity to either publish or reject the submission, which moves the content object

to either the published or private state.

Your business process will most likely require a different set of states. For

example, a workflow could naturally model the process of ratifying a bill in a state

legislature. You could start by creating a Private state to be used while the author is

creating a new bill, a Public state used before voting, a Voting state during which time

Illustration 1: A Simple Example State
Machine

Private

Public

Voting

Final
Review

Ratified

Vetoed

The legislator
creates a new bill.

The legislator finishes the bill.

The legislative body prepares to vote.

The legislative body
accepts the bill.

The public
rejects it.

The leg.
body rejects it.

President
accepts

President
vetoes

3

legislators are allowed to cast their votes, a Final Review state which gives the executive

branch time to review it, a Vetoed state, and a Passed state. (See Illustration 1.)

One good way to determine what states you need in your business process is to

first draw a diagram with "swim lanes". (See Illustration 2.) Draw a diagram with each

relevant user role at the head of a column, then draw dotted lines between the columns. In

the legislature example, the roles might be Owner, Public, Senator, and President. Draw

a state diagram that shows the flow of your content (in the example, a bill) between the

different users. Then create a workflow state for each bubble you draw in your diagram.

(See Illustrations 3 and 4.)

A technical note: changing the workflow state of an object does not move it to a

different location or add Python attributes to the object. Instead, it asks the workflow tool

to set the workflow state of the object and the workflow tool can choose how the state

will be stored. The default implementation of the workflow tool stores the workflow

state in the workflow_history attribute of CMF content objects.

Illustration 2: Using "Swim Lanes" in Designing a Workflow

Private

Public

Voting

Final
Review

Ratified

Vetoed

The legislator
creates a new bill.

The public
rejects it.

The leg.
body rejects it.

President
accepts

President
vetoes

Legislator Public Legislative
Body

President

Accepted

4

Defining Workflow Transitions

Transitions are the arrows in a state diagram. Generally, for every arrow you draw

in your state diagram, create a transition. Some state diagrams, however, have a lot of

Illustration 3: Add a workflow by clicking the "Add Workflow" button in the
portal_workflow tool.

Illustration 4: Creating States

5

arrows pointing to a single state. In that case it might be better to create just one transition

that you can reuse in modeling most of the transitions that lead to that state.

Each transition requires a destination state. Select the destination state from the

drop-down box. (See Illustration 5 below.)

Transitions are usually protected by a guard condition. If you drew swimming

lanes as suggested in Illustration 2, notice that many of the arrows cross the swimming

lanes. Every time you cross a swimming lane you need a guard condition. A guard

condition can be a permission, a role, or a workflow expression (described later). Guard

conditions ensure that only users with the required permission, role, or other criteria can

move the object to the new state.

Most transitions are initiated by a user action. For each transition initiated by a

user action, enter the information for the corresponding link that should be displayed to

the user in the actions box. The link will only be displayed when the user would be

Illustration 5: Configuring a Transition

6

allowed to perform the transition.

Sometimes you need special states and transitions in your workflow diagram that

model actions performed in the background, not by any user. In that case you might need

to set up transitions that are initiated automatically. Zope will proceed through automatic

transitions whenever the guard condition allows it.

Once you have defined all the transitions, go back to your workflow states and

define which transitions are allowed to leave those states.

Defining Variables

Often a simple flow of states can't model all the details of a business process. For

example, in the bill-passing example, a bill might be allowed to be revised and

resubmitted once it is vetoed, but only if it has been vetoed once. If it is vetoed a second

time, it is killed for good. To model this behavior, the state machine needs to carry a bit

of extra information that "remembers" the past veto.

A variable is a piece of information that transcends states. Most variables are

persistent. A variable might hold a counter, a flag, the name of the last user who did some

action, or any other simple object.

Variables also serve the purpose of exposing metadata to the catalog or the user.

There are five variables in the CMF default workflow: actor, action, comments,

time, and review_history. The first four are there to keep a record of who

executed the last transition, what they did, why, and when. The last variable makes it

possible for the user to view the workflow history of an object. (See Illustration 6.)

7

You can change the value of a variable when executing a transition or when

entering a state. Visit a state you created previously then switch to the Variables tab. Here

you can reset variables to some specific value. Then visit a transition and switch to the

Variables tab. Here you can enter expressions that will be computed to determine the new

value of a variable.

Defining Worklists

Some users need notification of work that needs to be completed. For example, in

the CMF default workflow, users with the Reviewer role need to be told when there are

items pending review, so they can visit them and either publish or reject them.

One way to accomplish this is with worklists. Worklists add links to users' actions

box when there are items in a certain state. The CMF default workflow supplies one

Illustration 6: The Standard Workflow Variables in CMF

8

worklist. It shows the Pending Review link to reviewers when there are items they are

allowed to review.

After creating a worklist, enter the name of the state it matches. Use a guard

condition to make only certain users see it. Also enter the name and URL of the link to be

displayed.

Defining Scripts

You may need to perform actions like sending an email or invoking another

workflow when users execute specific transitions. You can do this by writing scripts.

Scripts can be any Zope object, but Scripts (Python) are most likely the best choice.

Scripts are passed one parameter, the state_change object of a workflow

expression. Remember that your script is executed with the permissions of the user who

invokes the transition, rather than your own permissions, unless you give the script proxy

roles.

Once a script is in the Scripts container of a workflow you can visit a transition

and select the script to be executed. The script will be executed before the state change

and before variables are updated. It can raise exceptions to veto the action or an

ObjectMoved or ObjectDeleted exception to tell the workflow that the object has

moved or has been deleted.

Defining Permissions

In a business process, the workflow state of an object usually affects who is

allowed to perform non-workflow actions on the object. For example, in the CMF default

workflow, the owner of a piece of content is allowed to edit it when it is in the private

state, but not when it is in the published state. Anonymous users are allowed to see a

9

piece of content only if it is in the published state.

CMF accomplishes this by updating the role to permission mappings for objects

based on their workflow state. To do this in your own workflow, first determine which

permissions should be managed by your workflow by selecting them using the workflow

Permissions tab.

Then visit the Permissions tab of each state and select which roles should have

which permissions. This screen is very similar to the familiar Security tab. (See

Illustration 7.) Remember to turn off the Acquire Permission checkbox as necessary.

The role to permission mappings are stored on the objects themselves because that

is where they Zope has always stored them. Unfortunately this means that when you

change the role to permission mappings in the workflow you need to make sure the

changes are applied to the content objects throughout the system. But there is an easy

workaround: the default portal_workflow tool has a button you can click to update

the role to permission mappings in all content objects.

Illustration 7: Altering the Permission Mappings for a State

10

Workflow Expressions

A workflow expression is a TALES expression. TALES expressions are fully

described at the following Internet URL:

http://dev.zope.org/Wikis/DevSite/Projects/ZPT/TALES

Some of the contexts have slightly different meanings from what is provided for

expressions in page templates.

� here: The content object.

� container: The content object's container

Several other contexts are also provided.

� state_change: A special object containing info about the state change

� transition: The transition object being executed

� status: The former status

� workflow: The workflow definition object

� scripts: The scripts in the workflow definition object

state_change objects provide the following attributes:

� status is a mapping containing the workflow status.

� object is the object being modified by workflow.

� workflow is the workflow definition object.

� transition is the transition object being executed.

� old_state is the former state object.

� new_state is the destination state object.

� kwargs is the keyword arguments passed to the doActionFor() method.

11

� getHistory(), a method that returns a copy of the object's workflow history.

� getPortal(), which returns the root of the portal.

� ObjectDeleted and ObjectMoved, exceptions that can be raised by scripts to

indicate to the workflow that an object has been moved or deleted.

� getDateTime() is a method that returns the DateTime of the transition.

Conclusion

DCWorkflow is a valuable tool for its purpose. It lets you create and customize

simple workflows for many kinds of tasks. It is not a complete workflow engine, but for

the things it was designed to do, it should serve you well.

