Table of Contents

Module: kjSet Zope-2.2.1-src/lib/python/Products/ZGadflyDA/gadfly/kjSet.py

Functions   
AddArc
AddComposition
Augment
BGadd
BGempty
BGgetdel
BGtest
Difference
Empty
GetPairs
HasArc
Intersection
Mask
Neighbors
NewBG
NewDG
NewSet
Same
Sources
Subset
TransClose
Union
addMember
get_elts
member
  AddArc 
AddArc (
        Graph,
        Source,
        Dest,
        )

  AddComposition 
AddComposition (
        G1,
        G2,
        G3,
        )

when G1, G2 and G3 are different graphs this results in G1 = G1 U ( G2 o G3 ) If G1 is identical to one of G2,G3 the result is somewhat nondeterministic (depends on dictionary implementation). However, guaranteed that AddComposition(G,G,G) returns G1 U (G1 o G1) <= G <= TC(G1) where G1 is G's original value and TC(G1) is its transitive closure hence this function can be used for brute force transitive closure

  Augment 
Augment ( Set,  OtherSet )

  BGadd 
BGadd ( elt,  B )

may return new, larger structure must be used with assignment... B = BGadd(e,B)

Exceptions   
IndexError
  BGempty 
BGempty ( B )

  BGgetdel 
BGgetdel ( B )

Exceptions   
IndexError
  BGtest 
BGtest ( n )

  Difference 
Difference ( Set1,  Set2 )

  Empty 
Empty ( Set )

  GetPairs 
GetPairs ( Graph )

  HasArc 
HasArc (
        Graph,
        Source,
        Dest,
        )

  Intersection 
Intersection ( Set1,  Set2 )

  Mask 
Mask ( Set,  OtherSet )

  Neighbors 
Neighbors ( Graph,  Source )

  NewBG 
NewBG ()

make a new baggy with nothing in it BG[0] is insert cursor BG[1] is delete cursor, others are elts

  NewDG 
NewDG ( pairlist )

  NewSet 
NewSet ( Sequence )

  Same 
Same ( Set1,  Set2 )

  Sources 
Sources ( Graph )

  Subset 
Subset ( Set1,  Set2 )

  TransClose 
TransClose ( Graph )

in place transitive closure of a graph

  Union 
Union ( Set1,  Set2 )

  addMember 
addMember ( Elt,  Set )

  get_elts 
get_elts ( Set )

  member 
member ( Elt,  Set )


Table of Contents

This document was automatically generated on Mon Sep 4 07:33:06 2000 by HappyDoc version r0_6